当前位置:主页 > 科技论文 > 电气论文 >

三维多孔氮掺杂碳材料自支撑柔性膜及其在高能量密度超级电容器上的应用

发布时间:2020-08-22 00:41
【摘要】:超级电容器作为一种新型的储能器件,以其高功率密度、长循环寿命、安全稳定等特点受到广泛的关注,并越来越多地应用于快速充放电场合和能源自给型设备。然而商业超级电容器的低能量密度(一般为碳材料,不超过10 Wh kg~(-1))限制了其进一步应用。一般来说,超级电容器的储能性能很大程度上依赖于其电极材料。氮掺杂碳材料中氮原子掺杂进入sp~2杂化的碳层,在提高了碳材料能量存储能力的同时可以保持良好的电化学稳定性。目前这类材料已报道的比电容可高达855 F g~(-1),然而粉末状的多孔材料氮掺杂材料需要借助借助导电剂和粘结剂制备成电极,这些非活性物质的引入拉低了电极的整体性能。而不需添加剂的氮掺杂碳材料的自支撑膜电极性能有待进一步提高,其比容量一般不超过340 F g~(-1),且倍率性能较差。这主要是由于目前常用的制备多孔氮掺杂碳材料的方法如化学气相沉积、化学活化等方法难以在自支撑膜的制备中应用。同时具备高能量密度、良好倍率性能和循环稳定性的自支撑柔性电极的实现是一个挑战。凝胶现象广泛地应用于氮掺杂多孔块体材料的制备,然而受材料结构的稳定性所限,其较少用于膜电极材料的制备中。因此,本文利用凝胶策略和柔性衬底相结合的制备方法,获得了一系列具有相互连通大孔结构的柔性自支撑氮掺杂碳材料膜电极,一方面其相互连通的大孔结构有利于离子的传输和吸脱附,另一方面其均匀的氮掺杂和石墨烯网络结构提供了稳定的电子快速转移通道,获得了较高的质量比容量和能量密度。1.氮掺杂石墨烯柔性膜的可控制备我们首先利用吡咯作为含氮交联剂,使氧化石墨烯(GO)分散液形成凝胶。采用真空抽滤的方法,并以薄层GO底层作为凝胶的柔性载体,经过后续的冷冻干燥以及高温热解的过程,得到自支撑的氮掺杂石墨烯柔性膜。通过调节含氮交联剂的用量,获得了一系列不同氮掺杂量的自支撑氮掺杂石墨烯膜(NG-x)。我们对它们分别进行了形貌、结构以及电化学表征。结果发现NG-3膜呈现出丰富的相互连通的大孔结构以及最优异的电化学性能。结构中氮原子有效地掺入碳sp~2结构中,氮含量为3.27%。在1 A g~(-1)的电流密度下,可取得455.4 F g~(-1)的比容量。在5 A g~(-1)下,表现出良好的循环稳定性。2.基于氮掺杂石墨烯柔性膜的高能量密度的获得我们在上述结果基础上,利用与NG-3相同的制备比例,以冻干后未热解的气凝胶膜片为骨架,在不同吡咯浓度的反应液中复合聚吡咯,得到一系列聚吡咯复合的石墨烯气凝胶膜片。这些石墨烯/聚吡咯复合膜具有和NG-3相似的双层大孔结构。进一步地,我们用NG-3作为负极,聚吡咯复合气凝胶膜片作为正极,组装成不对称超级电容器。其工作电压窗口可达1.7 V,在849.8 W kg~(-1)的功率密度下获得了34.5 Wh kg~(-1)的较高能量密度,并且表现出良好的稳定性。3.高氮掺杂量的氮掺杂碳材料柔性膜的制备及其不对称超级电容器的组装与测试这一部分工作中,我们利用相似的凝胶化策略探索氮掺杂柔性膜的大面积低成本制备。以GO/CNT水凝胶作为起始物质,将其滴涂在柔韧的薄层PAN(聚丙烯腈)膜柔性衬底上,进一步经过聚合、热解后得到自支撑的柔性膜。随后一系列表征发现该柔性膜显示了双层相互连通的大孔结构,并具有9.1%的氮掺杂量。其对称超级电容器在1 A g~(-1)的电流密度下,能取得351.6 F g~(-1)的比容量。电流密度增大至20 A g~(-1)时,仍能保持55.7%的电容保持率。将热解前后的两个膜片组装成不对称超级电容器,可实现1.7 V的工作窗口。当功率密度为850.2 W kg~(-1)时,能取得60.6 Wh kg~(-1)的能量密度,表现出良好的循环稳定性。
【学位授予单位】:河南大学
【学位级别】:硕士
【学位授予年份】:2019
【分类号】:TB383.2;TQ127.11;TM53
【图文】:

储能器件,对比关系,能量密度,功率密度


储能器件的能量密度和功率密度的对比关系图(电子设备包括健康监测器、电子传感器、术发展迅速,已然成为令人瞩目的研究领力,柔性电子设备品种增多,其发展可能经济的持续发展。器概述器的分类和原理电化学电容器,是一种新型的能量储存器解液等部分组成。其储能机制分为两种:这两种储能机理,可分成三种电容器:1.双;3.杂化型电容器(前两者的混合存储)。超

示意图,双电层电容器,工作原理,示意图


以双电层电容器比传统电容器具有更大的能量密度。不同于传统极间的电解液一般为 KOH、H2SO4、Na2CO3等。电极表面电荷液中的离子吸附和晶体晶格缺陷的表面分解[10]。这些过程都通过成。图 1-2 (a)表明双电层电容器依靠电极材料颗粒产生电容,比间的界面上,在电极材料表面有过多或者过少的电荷积累,电解的离子聚集在界面的电解液这边,与电极表面的电荷达成平衡。上,电子从负极移到正极。在电解液中,阳离子移向负极,阴离与充电过程相反。从充放电过程可以看出,在电极和电解液的界且在电极和电解液中没有净离子交换,也就是说电荷是相互平衡浓度在充放电过程中保持不变。双电层电容器就是依靠这样的方1-2 (b)阐述了表面带有正电荷的多孔电极产生的双电层的结构(Ste散层中所包含的负电荷都对双电层电容有贡献。

示意图,法拉第准电容,工作原理,示意图


金属氧化物(RuO2、MnO2、LaMnO3lyaniline(PANI) 、 Polyethylene d某些异原子掺杂的碳材料[43],近几而被广泛研究。法拉第准电容储能包解液离子在内的氧化还原反应;导机理,所以电极材料的表面积对性能应是个体相过程,因此表面积并不会仅发生在电极表面,在整个电极内部器比双电层电容器具有更大的比电容容器往往具有相对较低的功率密度[4器和电池一样具有较差的循环稳定性

【相似文献】

相关期刊论文 前10条

1 摆玉龙;;超级电容器电极材料的研究进展[J];新疆化工;2011年03期

2 ;中科院合肥物质科学研究院石墨烯基超级电容器研制成功[J];中国建材资讯;2017年04期

3 林旷野;刘文;陈雪峰;;超级电容器隔膜及其研究进展[J];中国造纸;2018年12期

4 程锦;;超级电容器及其电极材料研究进展[J];电池工业;2018年05期

5 曾进辉;段斌;刘秋宏;蔡希晨;吴费祥;赵盼瑶;;超级电容器参数测试与特性研究[J];电子产品世界;2018年12期

6 刘永坤;姚菊明;卢秋玲;黄铮;江国华;;碳纤维基柔性超级电容器电极材料的应用进展[J];储能科学与技术;2019年01期

7 季辰辰;米红宇;杨生春;;超级电容器在器件设计以及材料合成的研究进展[J];科学通报;2019年01期

8 余凡;熊芯;李艾华;胡思前;朱天容;刘芸;;金属-有机框架作为超级电容器电极材料研究的综合性实验设计[J];化学教育(中英文);2019年02期

9 王蕾;;伊朗让纸变成“超级电容器” 可快速充放电[J];新能源经贸观察;2018年12期

10 李梦格;李杰;;超级电容器的原理及应用[J];科技风;2019年13期

相关会议论文 前10条

1 李艳;张升明;张振兴;;高性能锰掺杂钼酸镍纳米结构非对称超级电容器[A];2019年第四届全国新能源与化工新材料学术会议暨全国能量转换与存储材料学术研讨会摘要集[C];2019年

2 王凯;张熊;孙现众;李晨;安亚斌;马衍伟;;高性能超级电容器的关键材料与器件研究[A];第五届全国储能科学与技术大会摘要集[C];2018年

3 王振兵;;奥高性能石墨烯基超级电容器开发及其应用研究[A];第五届全国储能科学与技术大会摘要集[C];2018年

4 马衍伟;张熊;王凯;孙现众;李晨;;高性能超级电容器的研究[A];第五届全国储能科学与技术大会摘要集[C];2018年

5 代杰;汪汇源;谭X>予;隋刚;杨小平;;二硫化钼/中空碳球复合材料的制备及其在超级电容器中的应用[A];中国化学会2017全国高分子学术论文报告会摘要集——主题I:能源高分子[C];2017年

6 时志强;;开启电力能量储存与利用的新时代?——超级电容器技术与应用进展[A];2018电力电工装备暨新能源应用技术发展论坛报告集[C];2018年

7 马衍伟;张熊;孙现众;王凯;;高性能超级电容器及其电极材料的研究[A];第三届全国储能科学与技术大会摘要集[C];2016年

8 邱介山;于畅;杨卷;;超级电容器用功能二维纳米碳材料的合成及功能化[A];第三届全国储能科学与技术大会摘要集[C];2016年

9 孟月娜;武四新;;高倍率性的碳纳米管基柔性超级电容器电极[A];中国化学会第30届学术年会摘要集-第二十九分会:电化学材料[C];2016年

10 潘伟;薛冬峰;;铁基超级电容器[A];中国化学会第30届学术年会摘要集-第四十二分会:能源纳米材料物理化学[C];2016年

相关重要报纸文章 前10条

1 山科;煤基电容炭有望规模化生产[N];中国化工报;2014年

2 实习生 邱锐;碳纳米管超级电容器问世[N];中国科学报;2012年

3 记者 来莅;中国超级电容器技术及产业国际论坛在北海举行[N];北海日报;2019年

4 记者 杨保国 通讯员 周慧;合肥工业大学等 研发可实时修复的伸缩型超级电容器[N];中国科学报;2019年

5 见习记者 鲁珈瑞;开辟超级电容新路径[N];中国电力报;2019年

6 重庆商报-上游新闻记者 郑三波;“重庆造”超级电容器亮相[N];重庆商报;2019年

7 重庆商报-上游新闻记者 韦s

本文编号:2800049


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2800049.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c0fd8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com