当前位置:主页 > 科技论文 > 电力论文 >

基于表面等离子体共振增强的聚合物太阳能电池研究

发布时间:2018-01-08 05:21

  本文关键词:基于表面等离子体共振增强的聚合物太阳能电池研究 出处:《吉林大学》2014年博士论文 论文类型:学位论文


  更多相关文章: 聚合物太阳能电池 体异质结 表面等离子体 Ag纳米粒子 Au纳米粒子


【摘要】:共轭导电聚合物材料由于其具有柔韧性、易加工性,又具有半导体特性及导电特性等优点被人们所关注。随着人们对导电聚合物的不断深入探索,把它应用于太阳能电池器件,研究和开发低成本的聚合物太阳能电池成为了热点。但是,聚合物材料的吸收光谱较窄,且利用率较低,导致电池器件的光电转换效率低;另外,聚合物材料相对于无机半导体材料存在载流子迁移率低,且容易复合,扩散距离短等等问题。解决这些问题方法之一是重点研究吸收光谱宽且吸收系数高的聚合物材料;另一种方法就是设计陷光结构来提高光吸收,包括等离子体陷光、光子晶体陷光、光栅结构等,这些方法是通过限制入射光的传输特性,将光有效的限制在聚合物有源层材料之中,以达到增强光吸收,提高器件光电转换效率的目的。金属纳米粒子的表面等离子体陷光效应引起了科研工作者们的极大兴趣。 在本论文中,通过对金属纳米粒子制作工艺的研究,创新性的采用高真空蒸镀方法制备金属纳米结构,将该方法应用到聚合物太阳能电池中,系统的研究了金属纳米粒子的表面等离子体效应对聚合物太阳能电池光利用率的影响,通过优化制作工艺以及金属纳米粒子大小、位置,有效提升了器件的短路电流密度和能量转换效率。 Ag纳米粒子应用于正型聚合物太阳能器件中。首先,研究正型聚合物体异质结太阳能电池中有源层与电子传输层之间用蒸镀的方式加入Ag纳米粒子(1nm),通过实验观察到Ag纳米粒子(1nm)对正型聚合物体异质结太阳能电池器件的光电流和能量转换效率的提升作用;其次利用热蒸发的方式制备银纳米粒子,将其应用在正型器件的空穴传输层中,通过实验观察到Ag纳米粒子(1nm)使得正型器件的光电流和能量转换效率都有所提升;再次,然后我们用热蒸发的方式制备银纳米粒子,并将Ag纳米粒子(1nm)同时应用在正型器件的空穴传输层与电子传输层中,并对纳米粒子在空穴传输层中的位置进行优化。通过实验得到双纳米粒子的局域表面等离子体作用以及强散射作用,使器件性能得到了大幅度提高,器件的效率为2.31%,提高了约200%。为了进一步验证实验的准确性,我们对器件进行了原子力表面形貌分析表征、紫外-可见吸收分析表征、导电性提高的验证。论证了金属纳米粒子的引入对有机光伏器件光吸收性能和导电性能的作用。 Ag纳米粒子应用在反型聚合物太阳能电池中。简单介绍了TiO2电子传输层,以及运用溶胶-凝胶方法制备TiO2纳米层的过程;利用热蒸发的方式制备银纳米粒子,将其应用在基于TiO2薄膜的反型聚合物太阳能电池器件的空穴传输层中,通过实验验证了Ag纳米粒子对器件的短路电流密度和能量转换效率的提升作用;比较了不同厚度(1nm、3nm、5nm、8nm、10nm)Ag薄膜对器件性能的不同影响,得出当Ag薄膜为1nm时器件的性能得到了最大的提高器件的光电转换效率,效率提高到了3.35%,提高了约24%;并且对电池器件进行了紫外-可见吸收分析表征、复阻抗分析分析表征以及用FDTD软件模拟了Ag纳米粒子近场强度分布情况,有力的验证了银纳米粒子的加入器件性能的改善。 Ag纳米粒子与Au纳米粒子加入到基于PSBTBT:PC71BM的体异质反型聚合物太阳能器件的空穴传输层中。制作了PSBTBT:PC71BM不同质量比下的器件,优化纳米薄膜的厚度来最大限度的改善器件的性能。首先,Ag纳米粒子加入基于PSBTBT:PC71BM(质量比1:1.5)的体异质结的反型器件中,对器件的短路电流密度和能量转换效率的提升作用;比较了不同厚度(1nm、3nm)Ag薄膜对器件性能的不同影响,得出当Ag薄膜为1nm时器件的性能得到了最大的提高:器件的光电转换效率提高到了3.55%,提高了约52%。其次,Ag纳米粒子加入基于PSBTBT:PC71BM(质量比1:1)的体异质结的反型器件中,对器件的短路电流密度和能量转换效率的提升作用;在空穴传输层MoO3中引入1nm Ag(即Ag纳米粒子)后,器件的光电转换效率提高到了3.15%,提高了约41%。最后,Au纳米粒子加入基于PSBTBT:PC71BM(质量比1:1)的体异质结的反型器件中,对器件的短路电流密度和能量转换效率的提升作用;比较了不同厚度(1nm、3nm)Au薄膜对器件性能的不同影响,,得出当Au薄膜为1nm时器件的性能得到了最大的提高,能量转换效率提高到了3.26%。
[Abstract]:Conjugated conductive polymer materials because of its flexibility, ease of processing, but also has the advantages of semiconductor properties and electrical properties of attention. As people continue to explore in depth of the conductive polymers, it is applied to the solar cell devices, polymer solar battery research and development of low cost has become a hot spot. However, the absorption spectra of polymer materials the narrow, and the utilization rate is low, resulting in the photoelectric conversion efficiency of the battery device is low; in addition, the polymer material relative to the inorganic semiconductor material has low carrier mobility, and easy to composite, short diffusion distance and so on. One of the methods to solve these problems is the focus of research on wide absorption spectrum and the absorption coefficient of high polymer material; the other a method is designed to improve the light absorption and light trapping structure, including plasma trap light, light in photonic crystal, grating structure, these methods The transmission characteristics of the incident light will limit, effective limits in the polymer active layer material, in order to enhance the light absorption, improve the photoelectric conversion efficiency of the device. The surface plasmon of metal nanoparticles with light trapping effect has attracted great interest of researchers.
In this paper, through the research on the fabrication process of metal nanoparticles, innovative high vacuum evaporation plating method for preparing metal nano structure, the method is applied to the polymer solar cells, and systematic study of the surface plasmon effect of metal nanoparticles light utilization effect on polymer solar cell, by optimizing the production process and metal nanoparticle size, position, effectively enhance the short-circuit current density and energy conversion efficiency of the device.
The application of Ag nanoparticles Yu Zheng type polymer solar devices. Firstly, the research object is the polymer heterojunction solar cells between the active layer and the electron transport layer by deposition method adding Ag nanoparticles (1nm), observed by experiments of Ag nanoparticles (1nm) optical current and energy conversion and polymer bulk heterojunction solar cell devices efficiency enhance the role of the positive type; preparation of silver nanoparticles by using thermal evaporation method and its application in the hole transport layer type devices, Ag nanoparticles observed by experiment (1nm) makes the light current and energy conversion efficiency of the device is increased; again, then we use thermal evaporation method preparation of silver nanoparticles and Ag nanoparticles (1nm) and the application in the hole transport layer is device and the electronic transmission layer, and the position of the nanoparticles in the hole transport layer in the For optimization. Get localized surface plasmon effect of dual nanoparticles and strong scattering effect through the experiment, the performance of the device is greatly improved, the device efficiency was 2.31%, increased by 200%. in order to further verify the accuracy of the experiment, we are characterized by atomic force morphology on device, UV Vis absorption analysis. Verify, improve the conductivity. It introduced metal nanoparticles on the optical absorption properties of organic photovoltaic devices and electrical conductivity.
The application of Ag nanoparticles in the inverted polymer solar cells. A brief introduction of the TiO2 electron transport layer, and the application of sol gel method preparation of TiO2 nano layer; silver nanoparticles prepared by thermal evaporation method and its application in the hole transport layer based on the inverted polymer solar cell devices in TiO2 films by the experiment proved to enhance the role of the short circuit current density and energy conversion efficiency of Ag nanoparticles; comparison of different thickness (1nm, 3nm, 5nm, 8nm, 10nm) of different Ag film on the performance of the device, when the photoelectric conversion efficiency of devices has been the biggest efficiency of Ag thin film for the performance of 1nm devices. The efficiency is increased to 3.35%, increased by 24%; and the battery device by UV Vis characterization, complex impedance analysis and characterization using FDTD software to simulate the Ag nano particles in The distribution of the field strength proves the improvement of the performance of the silver nanoparticles.
Ag nanoparticles and Au nanoparticles based on PSBTBT:PC71BM layer heterogenous inverted polymer solar devices. Making more than PSBTBT:PC71BM under the different device quality, performance optimization of nano film thickness to improve the device maximum. Firstly, Ag nanoparticles based on PSBTBT:PC71BM (1:1.5) - type device body heterojunction, enhance the short-circuit current density and energy conversion efficiency of the device; comparison of different thickness (1nm, 3nm) Ag films of different influence on the performance of the device, when that was the largest increase of Ag thin film for the performance of 1nm device: the photoelectric conversion efficiency of the device is increased to 3.55%. Improved about 52%. second, Ag nanoparticles based on PSBTBT:PC71BM (1:1) - type device of bulk heterojunction, the short-circuit current density of the device and energy To enhance the role of conversion efficiency; the introduction of 1nm Ag MoO3 in the hole transport layer (Ag nanoparticles), photoelectric conversion efficiency of the device is increased to 3.15%, increased by 41%. finally, Au nanoparticles based on PSBTBT:PC71BM (1:1) - type device of bulk heterojunction, enhance the short-circuit current density and the energy conversion efficiency of the device; comparison of different thickness (1nm, 3nm) Au films of different influence on the performance of the device, when that was the largest increase of Au film as the performance of 1nm devices, the energy conversion efficiency is increased to 3.26%.

【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TM914.4

【参考文献】

相关期刊论文 前10条

1 李璐;于军胜;黎威志;李青;李伟;蒋亚东;;基于NPB的未掺杂高效蓝色有机电致发光器件[J];半导体光电;2007年06期

2 喻强,郝保红;纳米粒子的制备方法及应用[J];北京石油化工学院学报;2003年04期

3 王彦涛,韦玮,刘俊峰,张辉;聚合物本体异质结型太阳能电池研究进展[J];高分子通报;2004年06期

4 李春燕,李懋强;TiO_2的溶胶-凝胶过程研究[J];硅酸盐学报;1996年03期

5 李贵芳;全威;刘金锁;陈磊;张吉东;闫东航;秦大山;;加入NPB提高P3HT:PCBM聚合物太阳能电池光伏性能[J];高分子通报;2012年08期

6 李喜波;唐晓红;吴卫东;唐永建;王红艳;杨向东;;磁控溅射法制备金团簇纳米颗粒及性能表征[J];强激光与粒子束;2006年06期

7 王振林;;表面等离激元研究新进展[J];物理学进展;2009年03期

8 鲁厚芳,阎康平,涂铭旌;影响染料敏化二氧化钛纳米晶太阳能电池的因素[J];现代化工;2004年01期

9 林红;张永昌;李鑫;李建保;;聚合物太阳能电池发展与展望[J];新材料产业;2011年05期

10 李国龙;何力军;李进;李学生;梁森;高忙忙;袁海雯;;纳米银增强聚合物太阳能电池光吸收的研究[J];物理学报;2013年19期



本文编号:1395799

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1395799.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8efb6***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com