基于下垂控制的三相逆变器并联技术研究
发布时间:2018-01-12 15:40
本文关键词:基于下垂控制的三相逆变器并联技术研究 出处:《南京航空航天大学》2014年硕士论文 论文类型:学位论文
【摘要】:近年来,分布式新能源发电由于其具有安全可靠、节能环保、技术先进等优点,并且分布式发电与大电网相结合还能提高系统的安全性与灵活性,被能源和电力专家一致认为是21世纪电力工业的主要发展模式。随着分布式发电技术的不断发展,对其容量、稳定性、可扩展性等提出了更高的要求,逆变器并联是一种行之有效的解决措施,是实现上述要求的基础。此外,在航空场合,随着多电飞机及全电飞机的推广,机载电子设备的不断增加,逆变器并联技术也表现出了很好的应用前景,可解决机载电源系统对容量、稳定性、可靠性和可扩展性等方面的需求。因此,研究逆变器并联技术具有重要意义。 本文首先回顾总结了现有逆变器并联系统的结构和控制方法,相比而言,下垂控制方法具有抗干扰能力强、扩容和维护方便、运行可靠等突出优点而被广泛关注,是当前的研究热点和重点。但是,采用下垂控制的逆变器并联系统稳定性及系统参数设计还有待深入分析。因此,本文选择基于下垂控制策略的三相逆变器并联系统展开研究,旨在深入探讨并联系统的稳定性,优化设计系统的各项参数,提高系统的性能指标,为下垂控制策略的优化设计提供理论指导。 随后,本文利用动态相量法对采用传统下垂控制的逆变器并联系统进行小信号建模。在此基础上,通过对有功-频率下垂系统及无功-幅值下垂系统的稳定性进行深入的分析,推导了能维持系统稳定运行的频率及电压幅值下垂系数的取值范围,并给出了优化设计的方法,为工程设计奠定了理论基础。并针对传统下垂控制方式存在的动态性能较差、具有静态误差等缺点,论文介绍了一种改进的下垂控制方式。通过对该改进型下垂控制方式进行小信号建模分析,,找出了下垂方程中各项参数对系统性能影响的规律,从而给出了各个参数的优化设计方法,为后续研究提供了理论基础。 其次,论文基于MATLAB/Simulink平台,分别搭建了采用传统下垂控制方式和改进型下垂控制方式的逆变器并联系统仿真模型。同时,设计了一套基于TMS320F28335的三相逆变器并联实验平台,给出了系统的硬件设计和软件设计,并在此平台上对上述理论进行了实验验证。仿真和实验结果表明采用下垂控制策略的逆变器并联系统能够很好地实现电流及功率的均分,动态响应良好,验证了理论分析的正确性和可行性。
[Abstract]:In recent years, distributed new energy generation has the advantages of safety and reliability, energy saving and environmental protection, advanced technology, and the combination of distributed generation and large power grid can also improve the security and flexibility of the system. In 21th century, energy and power experts agree that it is the main mode of development of power industry. With the continuous development of distributed generation technology, the capacity, stability, scalability and so on put forward higher requirements. Parallel inverter is an effective solution, is the basis to achieve the above requirements. In addition, in aviation, with the promotion of multi-electric aircraft and all-electric aircraft, the number of airborne electronic equipment continues to increase. Parallel inverter technology also shows a good application prospects, can solve the airborne power system for capacity, stability, reliability and scalability, and so on. It is of great significance to study the parallel technology of inverter. In this paper, the structure and control methods of the inverter parallel system are reviewed firstly. Compared with the traditional control method, the droop control method has the advantages of strong anti-interference ability, easy to expand and maintain. The stability and system parameter design of parallel inverter with droop control is still to be analyzed deeply because of its outstanding advantages such as reliable operation and wide attention, which is the focus and focus of current research. In this paper, a three-phase inverter parallel system based on droop control strategy is selected to discuss the stability of the parallel system, optimize the parameters of the system, and improve the performance of the system. It provides theoretical guidance for optimal design of droop control strategy. Then, the dynamic phasor method is used to model the inverter parallel system with traditional droop control. Through the deep analysis of the stability of active power-frequency droop system and reactive power-amplitude droop system, the range of frequency and voltage sagging coefficient which can maintain the stable operation of the system is deduced. The method of optimal design is given, which lays a theoretical foundation for engineering design, and aims at the disadvantages of poor dynamic performance and static error in the traditional droop control mode. In this paper, an improved droop control method is introduced. Through the small signal modeling and analysis of the improved droop control mode, the law of the influence of the parameters in the droop equation on the performance of the system is found out. Thus, the optimal design method of each parameter is given, which provides a theoretical basis for further research. Secondly, based on MATLAB/Simulink platform, the simulation model of inverter parallel system using traditional droop control mode and improved droop control mode is built. A parallel experiment platform of three-phase inverter based on TMS320F28335 is designed. The hardware design and software design of the system are given. The simulation and experimental results show that the parallel inverter system with droop control strategy can achieve the average current and power distribution, and the dynamic response is good. The correctness and feasibility of the theoretical analysis are verified.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM464
【参考文献】
相关期刊论文 前4条
1 方天治;阮新波;肖岚;刘爱忠;;一种改进的分布式逆变器并联控制策略[J];中国电机工程学报;2008年33期
2 于玮;徐德鸿;;基于虚拟阻抗的不间断电源并联系统均流控制[J];中国电机工程学报;2009年24期
3 华明;胡海兵;邢岩;何中一;;一种变频器并联运行的分布式控制方法[J];中国电机工程学报;2010年24期
4 高范强;王平;李耀华;李子欣;朱海滨;胜晓松;董贯洁;;基于时变相量小信号模型的逆变器并联控制系统分析与设计[J];中国电机工程学报;2011年33期
相关博士学位论文 前2条
1 于玮;UPS并联系统若干关键问题研究[D];浙江大学;2009年
2 张尧;基于逆变器并联系统的网络控制技术及其相关问题的研究[D];浙江大学;2010年
本文编号:1414907
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1414907.html
教材专著