当前位置:主页 > 科技论文 > 电力论文 >

基于粒子群算法的混合储能系统容量优化配置

发布时间:2018-01-15 13:35

  本文关键词:基于粒子群算法的混合储能系统容量优化配置 出处:《宁夏大学》2014年硕士论文 论文类型:学位论文


  更多相关文章: 蓄电池 超级电容器 混合储能 粒子群算法 加速因子 容量优化


【摘要】:为了提高供电的稳定性、可靠性,实现日夜发电,在太阳能、风能资源比较丰富的区域,建立风能、太阳能互补发电系统。但是由于系统投入成本过高,风、光又存在间歇性和不稳定性等问题,需要配置储能系统来平抑功率波动。超级电容器储能技术的功率密度高、充放电速度快、使用寿命长,蓄电池储能技术比较成熟、价格便宜,但是蓄电池的体积重量大、功率密度低、使用寿命比较短。鉴于二者的互补特征,将超级电容器和蓄电池混合作为风光互补发电系统中的储能装置。 首先对光伏电池、风力机、蓄电池和超级电容器的特性进行了分析,建立了超级电容器-蓄电池直接并联、通过电感并联和通过功率变换器并联三种储能方法的模型,通过理论分析和仿真实验表明,当负载脉动时,将二者混合的储能系统提高了储能系统的功率输出能力,减少了蓄电池的输出电流,延长工作时间,减少了内部损耗。其次,建立了以储能装置的生命周期费用为目标函数,以负荷缺电率等为约束条件的独立风电储能系统的容量优化模型,比较传统蓄电池储能、改进蓄电池储能、传统混合储能和改进的混合储能这四种储能方法的优缺点。再次,在风光互补发电系统中,以蓄电池和超级电容器作为混合储能装置,以储能系统的全生命周期年费用最小为目标,以系统的缺电率等运行指标为约束条件,建立了一种混合储能系统容量优化配置模型。分别用标准的粒子群算法、权重改进的粒子群算法和加速因子改进的粒子群算法进行求解。最后,在MATLAB软件中,分别对独立风电储能系统的容量优化配置和风光互补混合储能容量优化配置系统进行仿真,仿真结果表明:改进的混合储能系统具有更低的全生命周期费用;采用加速因子改进的粒子群优化算法可以得到更好优化效果,不仅能加快收敛速度,同时也降低了生命周期费用。
[Abstract]:In order to improve the stability and reliability of power supply and realize power generation day and night, in the region with abundant solar and wind energy resources, wind and solar complementary power generation system is established. However, due to the high cost of the system, wind. Because of the intermittent and instability of light, the energy storage system is needed to stabilize the power fluctuation. The energy storage technology of supercapacitor has high power density, fast charge and discharge speed and long service life. Battery energy storage technology is more mature, cheap, but the battery volume weight, low power density, short service life, in view of the complementary characteristics of the two. Supercapacitors and batteries are mixed as energy storage devices in wind-wind complementary power generation systems. Firstly, the characteristics of photovoltaic cells, wind turbines, batteries and supercapacitors are analyzed, and the direct parallel connection between supercapacitors and batteries is established. Through the model of three kinds of energy storage methods: inductor parallel and power converter, the theoretical analysis and simulation results show that when the load fluctuates. The hybrid energy storage system improves the power output capacity of the energy storage system, reduces the output current of the battery, prolongs the working time and reduces the internal loss. The capacity optimization model of the independent wind energy storage system with the life cycle cost of energy storage unit as the objective function and the load shortage rate as the constraint condition is established to compare the traditional storage battery and improve the storage energy of the battery. The advantages and disadvantages of the traditional hybrid energy storage and the improved hybrid energy storage methods. Thirdly, in the wind-wind complementary generation system, batteries and supercapacitors are used as hybrid energy storage devices. Aiming at the minimum annual cost of the whole life cycle of the energy storage system and taking the running index of the system such as the power shortage rate as the constraint condition, an optimal configuration model of the capacity of the hybrid energy storage system is established. Standard particle swarm optimization (PSO) algorithm is used respectively. The weight improved particle swarm optimization algorithm and the acceleration factor improved particle swarm optimization algorithm are solved. Finally, in the MATLAB software. The simulation results show that the improved hybrid energy storage system has lower life cycle cost. The particle swarm optimization (PSO) algorithm improved by the acceleration factor can not only accelerate the convergence speed but also reduce the life cycle cost.
【学位授予单位】:宁夏大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM53;TM912

【参考文献】

相关期刊论文 前10条

1 王琰;;第11届欧洲铅蓄电池会议论文介绍[J];蓄电池;2009年01期

2 陈胜洋,武立军,李红;电动车用铅酸蓄电池的现状与前景[J];电池;2003年03期

3 李海东;祁新春;齐智平;;双电层电容器的应用模型[J];电池;2007年04期

4 李少林;姚国兴;;风光互补发电蓄电池超级电容器混合储能研究[J];电力电子技术;2010年02期

5 刘建涛;张建成;;一种超级电容器—蓄电池混合储能系统控制方法[J];电力科学与工程;2011年01期

6 何勇琪;张建成;;独立型风光互补系统中储能容量优化研究[J];电力科学与工程;2012年04期

7 鲁宗相;王彩霞;闵勇;周双喜;吕金祥;王云波;;微电网研究综述[J];电力系统自动化;2007年19期

8 杨琦;张建华;刘自发;夏澍;;风光互补混合供电系统多目标优化设计[J];电力系统自动化;2009年17期

9 张国驹;唐西胜;齐智平;;超级电容器与蓄电池混合储能系统在微网中的应用[J];电力系统自动化;2010年12期

10 颜志敏;王承民;连鸿波;衣涛;时志雄;张宇;;计及缺电成本的用户侧蓄电池储能系统容量规划[J];电力系统自动化;2012年11期



本文编号:1428584

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1428584.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户78a3a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com