当前位置:主页 > 科技论文 > 电力论文 >

复合储能装置的控制策略和各储能单元参数优化

发布时间:2018-01-15 13:31

  本文关键词:复合储能装置的控制策略和各储能单元参数优化 出处:《重庆大学》2014年硕士论文 论文类型:学位论文


  更多相关文章: 超级电容 复合储能装置 控制策略 优化 仿真


【摘要】:超级电容作为一种新型环保的储能装置,具有比功率大、充放电迅速、循环使用寿命长等优点,通过与蓄电池的联合使用,既能解决蓄电池输出能力偏弱的缺点,也能解决超级电容储存的能量偏少的不足。从而既提高了电动车的动力性的同时,也不损害电动车对单次充电后续驶里程的诉求。 本文以电动车用复合储能装置为研究对象,主要从以下几个方面完成了相关研究: ①分析当前应用于电动车的各种蓄电池的优缺点,对本文最终选用的储能单元锂电池、超级电容和DC/DC变换器的工作原理和性能参数进行深入分析,,研究复合储能装置的基本结构,并对各种基本结构进行对比分析,选用综合性能较好的结构,最终在各储能单元模型的基础上建立了复合储能装置的仿真模型。 ②制定复合储能装置的工作模式,提出复合储能装置的总体控制目标,并根据总体控制目标制定复合储能装置的速度控制策略、蓄电池输出电流约束控制策略和基于速度控制和电流约束的模糊控制策略、超级电容储能不足时锂电池对超级电容充电的控制策略和制动能量回收时的控制策略,最终最后根据前面提出的控制策略制定总体控制流程图。 ③通过对电动机和控制装置性能的比较,确定了驱动电机的类型,根据本文选定的整车参数和制定的电动车性能参数,完成对驱动电机参数的确定。针对复合储能装置各储能单元对电动车的动力性能和续驶里程的影响,分定性和定量两步制定复合储能装置中各个储能参数的取值范围,通过线性规划完成各个参数的优化及整定。 ④对选定的复合储能装置,按照提出的复合储能装置工作模式及相应的控制策略,在Matlab/Simulink仿真平台上搭建整车仿真模型,最后根据优化整定的参数,完成电动汽车加速性能分析,并在高速道路行驶工况及城市道路行驶工况下的动力性和经济性分析,验证复合储能装置和相关控制策略的有效性。
[Abstract]:As a new type of environmental protection energy storage device, super capacitor has the advantages of high specific power, rapid charge and discharge, long cycle life, etc. It is used in combination with battery. It can not only solve the problem of weak output capacity of battery, but also solve the shortage of storage energy of super capacitor, which not only improves the power performance of electric vehicle. Also does not harm the electric vehicle to the single charge follow-up drive mileage demand. This paper takes the compound energy storage device for electric vehicle as the research object, and completes the related research mainly from the following aspects: 1. The advantages and disadvantages of various batteries used in electric vehicles are analyzed, and the working principle and performance parameters of the final energy storage unit lithium battery, super capacitor and DC/DC converter are analyzed. The basic structure of composite energy storage device is studied, and various basic structures are compared and analyzed, and the structure with better comprehensive performance is selected. Finally, the simulation model of composite energy storage unit is established on the basis of each energy storage unit model. (2) the working mode of composite energy storage unit is established, the overall control target of composite energy storage device is put forward, and the speed control strategy of composite energy storage device is formulated according to the overall control goal. The output current constraint control strategy of battery and fuzzy control strategy based on speed control and current constraint are presented. The control strategy of lithium battery to the super capacitor charging and the control strategy of braking energy recovery when the energy storage of super capacitor is insufficient. Finally, the overall control flow chart is made according to the control strategy proposed above. (3) by comparing the performance of motor and control device, the type of driving motor is determined. According to the parameters of the whole vehicle selected in this paper and the performance parameters of electric vehicle. The effect of each energy storage unit of composite energy storage device on the dynamic performance and driving range of electric vehicle is completed. The range of energy storage parameters in composite energy storage equipment is determined by qualitative and quantitative steps, and the parameters are optimized and set by linear programming. 4 for the selected composite energy storage device, according to the proposed working mode of the composite energy storage device and the corresponding control strategy, the vehicle simulation model is built on the Matlab/Simulink simulation platform. Finally, according to the optimized parameters, the acceleration performance analysis of the electric vehicle is completed, and the power and economy analysis under the high-speed road driving condition and the urban road driving condition. Verify the effectiveness of the composite energy storage device and related control strategies.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U469.72;TM912

【参考文献】

相关期刊论文 前10条

1 侯明;衣宝廉;;燃料电池技术发展现状与展望[J];电化学;2012年01期

2 钟海云,李荐,戴艳阳,李庆奎;新型能源器件——超级电容器研究发展最新动态[J];电源技术;2001年05期

3 熊瑞;何洪文;张晓伟;;基于试验数据的超级电容建模方法[J];车辆与动力技术;2010年04期

4 于远彬;王庆年;王加雪;赵晓旭;;混合动力汽车车载复合电源参数匹配及其优化[J];吉林大学学报(工学版);2008年04期

5 电动汽车重大专项总体组;“十五”国家高技术研究发展计划(863计划)电动汽车重大专项进展[J];汽车工程;2003年06期

6 陈全世,林成涛;电动汽车用电池性能模型研究综述[J];汽车技术;2005年03期

7 张炳力,赵韩,张翔,钱立军;超级电容在混合动力电动汽车中的应用[J];汽车研究与开发;2003年05期

8 张翔,赵韩,张炳力,钱立军;中国电动汽车的进展[J];汽车研究与开发;2004年01期

9 金朝勇;张炳力;徐小东;徐德胜;谈健;;车用超级电容的建模与仿真[J];农业装备与车辆工程;2009年08期

10 李俄收;王远;吴文民;;超高速飞轮储能技术及应用研究[J];微特电机;2010年06期



本文编号:1428570

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1428570.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3a9cf***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com