当前位置:主页 > 科技论文 > 电力论文 >

凝胶聚合物电解质膜的制备研究

发布时间:2018-02-20 04:11

  本文关键词: 锂离子电池 凝胶聚合物 电解质 离子液体 出处:《哈尔滨理工大学》2014年硕士论文 论文类型:学位论文


【摘要】:锂离子电池诞生于20世纪末,因其性能优越而备受亲睐。近年来,商用锂离子电池中液体电解质因其漏液而频发事故,迫使人们寻求新的材料来替代液体电解质,以解决这类问题。根据物质的三种状态研究发现,固体电解质由于多种限制因素的影响并不能达到实际应用,因此介于固、液态间的凝胶电解质引起了人们的关注。 本文选择溴化N-甲基-N-丙基哌啶(Pp_(13)Br)、溴化N-甲基-N-丁基哌啶(Pp_(14)Br)、溴化N-甲基-N-丙基吡咯烷(Py_(13)Br)和溴化N-甲基-N-丁基吡咯烷(Py_(14)Br)四种物质与双三氟甲磺酰亚胺基锂(LiTFSI)搭配反应得到四种离子液体:N-甲基-N-丙基哌啶双三氟甲磺酰亚胺(Pp_(13)TFSI)、N-甲基-N-丁基哌啶双三氟甲磺酰亚胺(Pp_(14)TFSI)、 N-甲基-N-丙基吡咯烷双三氟甲磺酰亚胺(Py_(13)TFSI)、N-甲基-N-丁基吡咯烷双三氟甲磺酰亚胺(Py_(14)TFSI)。 利用原位法,以甲基丙烯酸甲酯(MMA)、离子液体(Pp_(13)TFSI、Pp_(14)TFSI、Py_(13)TFSI、Py_(14)TFSI)、锂盐(LiTFSI)、交联剂乙二醇二甲基丙烯酸酯(EDMA)和引发剂过氧化苯甲酰(BPO)为原料,制备了凝胶聚合物电解质膜(GPE)。GPE中的基体为聚甲基丙烯酸甲酯(PMMA)。 采用线性扫描伏安曲线(LSV)法、X射线衍射(XRD)法、差式量热法(DSC)、原子力显微镜(AFM)、充放电循环等方法对Pp_(13)TFSI/LiTFSI/PMMA电解质膜、Pp_(14)TFSI/LiTFSI/PMMA电解质膜、Py_(13)TFSI/LiTFSI/PMMA电解质膜、Py_(14)TFSI/LiTFSI/PMMA电解质膜这四种不同类型的凝胶聚合物电解质膜各种性能进行测试。测试结果表明,四种不同类型的凝胶聚合物电解质膜各自对应的电化学稳定窗口值分别为4.5V、4.2V、5.0V、5.2V,符合锂离子电池对膜的稳定电压的要求,同时,得到的Py_(13)TFSI/LiTFSI/PMMA电解质膜和Py_(14)TFSI/LiTFSI/PMMA电解质膜的稳定性比Pp_(13)TFSI/LiTFSI/PMMA和Pp_(14)TFSI/LiTFSI/PMMA的稳定性更好。除此以外,,Pp_(13)TFSI/LiTFSI/PMMA电解质膜、Pp_(14)TFSI/LiTFSI/PMMA电解质膜、Py_(13)TFSI/LiTFSI/PMMA电解质膜、Py_(14)TFSI/LiTFSI/PMMA电解质膜这四种不同类型的凝胶聚合物电解质膜各自的首次充电比容量分别为132.1mAh/g、144.0mAh/g、160.3mAh/g、164.5mAh/g。
[Abstract]:Lithium-ion battery (Li-ion battery) was born at the end of 20th century, and it is popular for its superior performance. In recent years, liquid electrolytes in commercial lithium-ion batteries have been subjected to frequent accidents due to their leakage, forcing people to seek new materials to replace liquid electrolytes. In order to solve this kind of problem, according to the study of three states of substance, it is found that solid electrolyte can not be used in practice because of the influence of many limiting factors, so the gel electrolyte between solid and liquid has attracted people's attention. N- methyl-N- propyl piperidine bromide (N- methyl-N- propyl piperidine), N- methyl-N- Ding Ji piperidine piperidine bromide, N- methyl-N- propyl pyrrolidine (Pyrrolium) and N- methyl-N- methyl-N-methyl-pyrrolidine pyrrolidine pyrrolidine-Pyrrolium-14 Br-) are selected to match with bisfluoromethyl sulfidylithiocarbamate (LiTFSII) in this paper. The two substances are N- methyl-N- propyl piperidine bromide (N- methyl-N-propylpyrrolidine) and N- methyl-N-propylpyrrolidine bromide. Four ionic liquids, N- methyl-N- propyl piperidine bis-trifluoromethyl sulfonimide (PpS), PpS, PpS, N- methyl-N--Ding Ji-piperidine, piperidine bis-trifluoromethyl sulfonyl-imide, N- methyl-N- propylpyrrolidine-bis-trifluoromethane-pyrrolidine-pyrrolidine-trifluoromethyl-pyrrolidine-pyrrolidine-Nmethyl-N#china_person1#-pyrrolidine bis-trifluoromethyl-pyrrolidine-pyrrolidine-pyrrolidine. Trifluoromethylsulfonimide (TSF). Using in situ method, using methyl methacrylate (MMA), ionic liquid (Ionic liquid) (Ionic liquid), and ionic liquid (Ionic liquid), as raw materials, the following materials were used as raw materials: methyl methacrylate (MMA), ionic liquid (IPL) 13TFSIP, TFSI14, LiTFSIM, crosslinker EDMAand initiator, benzoyl peroxide (BPO). The matrix of the gel polymer electrolyte membrane (GPE-GPE. GPE) was prepared by polymethyl methacrylate (PMMA). The linear scanning voltammetry (LSVV) method and X-ray diffraction (XRD) method were used. Differential calorimetry (DSC), atomic force microscopy (AFM), charge / discharge cycles and other methods were used to test the various properties of four different types of gel polymer electrolyte membranes, namely, Pp_(13)TFSI/LiTFSI/PMMA electrolyte membrane PpS / LiTFSI14 / LiTFSIP / PMMA electrolyte membrane, Pystani / LiTFSI13 / PMMA electrolyte membrane, Pystav / LiTFSIR / PMMA electrolyte membrane, four different types of gel polymer electrolyte membranes. The corresponding electrochemical stability window values of the four different types of gel polymer electrolyte membranes are 4.5V ~ 4.2V ~ 5.0V ~ 5.2V respectively, which meet the requirements of the lithium ion battery for the stability voltage of the membrane, at the same time, The stability of the obtained Py_(13)TFSI/LiTFSI/PMMA electrolyte membrane and Py_(14)TFSI/LiTFSI/PMMA electrolyte membrane is better than that of Pp_(13)TFSI/LiTFSI/PMMA and Pp_(14)TFSI/LiTFSI/PMMA. In addition, the Py_(13)TFSI/LiTFSI/PMMA / LiTFSI / PMMA electrolyte membrane has better stability than that of Pp_(13)TFSI/LiTFSI/PMMA and Pp_(14)TFSI/LiTFSI/PMMA. Their initial charging capacity was 132.1 mg / g 144.0 mg / g = 160.3 mg / g / g = 164.5 mg / g respectively.
【学位授予单位】:哈尔滨理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM912;O646

【参考文献】

相关期刊论文 前10条

1 袁艳;陈白珍;陈亚;;溶剂挥发法制备聚合物电解质P(VDF-HFP)/PVP及其性能[J];中国有色金属学报;2013年11期

2 刘卫东;李浩;姚之侃;王婷;朱宝库;朱利平;;锂离子电池用PVDF/P(MMA-co-DMAEMA)共混隔膜的制备与性能[J];功能材料;2012年11期

3 杨波;李新海;郭华军;王志兴;黄思林;李勇勇;;PVP/PVDF-HFP微孔聚合物电解质的制备及性能[J];中南大学学报(自然科学版);2012年05期

4 徐峰;徐立新;陈枫;杨晋涛;钟明强;;MCM41有序介孔SiO_2表面接枝PMMA的制备及其对PMMA基聚电解质膜的改性作用研究[J];科技通报;2012年01期

5 刘玉柱;乔庆东;李琪;孙悦;;用于锂离子电池的改性凝胶聚合物电解质[J];化工科技;2011年01期

6 褚衡;陈晓琴;连芳;杨力行;王超;;锂离子电池凝胶聚合物电解质制备工艺进展[J];化工新型材料;2010年12期

7 袁维娜;王存国;;锂离子电池凝胶聚合物电解质的研究进展[J];化学通报;2010年05期

8 涂洪成;杨震宇;张荣斌;古宁宇;;锂离子电池用凝胶聚合物电解质研究进展[J];化学通报;2010年05期

9 古宁宇;谢媛媛;杨震宇;张荣斌;;聚合物电解质中增塑剂的研究进展[J];化学通报;2009年12期

10 赵淑红;吴锋;王子冬;;磷酸铁锂动力电池工况循环性能研究[J];电子元件与材料;2009年11期

相关博士学位论文 前1条

1 崔闻宇;锂离子电池用离子液体型电解质的制备及其性能研究[D];哈尔滨工业大学;2010年



本文编号:1518734

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1518734.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4eea1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com