大型风电场基于CFD技术的储能容量优化计算方法
本文选题:风力发电机组 切入点:输出功率期望值 出处:《上海交通大学》2015年硕士论文 论文类型:学位论文
【摘要】:2015年1月初发布的数据:我国风力发电总装机容量已达1.147亿千瓦,风电装机在体量上已经遥遥领先各国,但是由于中国用电负荷中心集中在东部沿海,而风电的输送受调峰、电网、地域等众多因素限制,使“三北地区”出现了大面积弃用风电上网的现象,数据显示国内弃风限电规模已经居世界首位。一边是大面积的“绿色能源”被白白浪费,另一边是煤炭、石油等化石能源的过度消耗导致的日益严重的环境污染和能源危机,为了破解上述尴尬处境,让风电的输出稳定、可控是解决问题的关键。为了使每一台风机都成为风场中的可调度单元,减少电力系统旋转备用容量,最好的办法就是为每台风机配备储能装置,使其在要求的时间内能保持风机的稳定输出,这就引出了如何配置不同风场储能容量的问题。由于风场建设区域场地条件一般比较复杂,而在传统研究风场储能容量时,会取整个风场中单独某一台风机建立数学模型,来进行分析计算,并将计算得到的储能容量值作为代表全场的平均水平,在上述假设中,我们人为的把风场内的所有的风电机组的期望风速和期望的输出功率的值都认为是相同,而忽略了风电场中风机受到地形、尾流等因素影响,因此,采用理想数学模型计算的储能容量与实际情况有较大差异,容易造成储能容量太大或储能成本过高。目前虽然大容量储能技术瓶颈已经突破,但是大容量储能的成本依然过高,研究如何用最小的储能容量满足风电场在要求时间内的持续输出很有意义。为了解决上述问题,本文提出了一种“大型风电场基于CFD技术的储能容量优化计算方法”。CFD(computational fluid dynamics technology)技术作为计算流体力学的分支,为计算风电场的最优储能容量提供了一种解决方法,基于雷诺相似理论,运用计算机技术和WT软件模拟风场实际情况,建立计算模型,从计算流体力学的方向上来计算最优储能容量的问题。以给定的实际场地条件、风场植被、气压、空气密度、功率曲线、测风塔的测风的数据为基础,通过计算机技术和CFD内核的WT软件模拟计算,得到整个风场中详细到每个风机点位上的风能资源分布情况,结合功率曲线,计算出每个机位点上的风的变化情况、发电量、输出功率期望值E等参数值,再根据储能设备容量计算公式S=Pn×E×H计算出每台机位所需的最优储能容量。该方法计算得到的结果更为接近真实情况,以期为风电场储能的投资、开发、设计提供决策参考。
[Abstract]:Data released in early January of 2015: the total installed capacity of wind power in China has reached 147 million kilowatts, and the installed capacity of wind turbines has been far ahead of other countries in volume. However, because the power load centers in China are concentrated in the eastern coast, the transmission of wind power is peak-shaved. Many factors, such as power grids and geographical constraints, have led to the phenomenon of large-scale abandonment of wind power from the Internet in the "three northern regions". Data show that the scale of wind power loss in China has already ranked first in the world. On the other hand, a large area of "green energy" has been wasted. On the other side is the increasingly serious environmental pollution and energy crisis caused by excessive consumption of fossil energy such as coal and petroleum. In order to solve the above embarrassing situation and stabilize the output of wind power, Controllability is the key to solving the problem. In order to make every typhoon machine become a schedulable unit in the wind field and reduce the power system rotation reserve capacity, the best way is to equip each typhoon machine with a storage device. The steady output of the fan can be maintained in the required time, which leads to the problem of how to configure the energy storage capacity of different wind fields. Because of the complex site conditions in the wind field construction area, in the traditional study of the energy storage capacity of the wind field, A mathematical model of a single typhoon in the whole wind field will be taken to analyze and calculate, and the calculated energy storage capacity will be taken as the average level representing the whole field. In the above assumption, We artificially assume that the expected wind speed and the expected output power of all wind turbines in the wind field are the same, but we ignore that the wind turbines in the wind farm are affected by the topography, wake and other factors, so, The energy storage capacity calculated by the ideal mathematical model is quite different from the actual situation, and it is easy to cause the energy storage capacity to be too large or the energy storage cost is too high. Although the bottleneck of large capacity energy storage technology has been broken through, the cost of large capacity energy storage is still too high. It is meaningful to study how to use the minimum energy storage capacity to satisfy the sustained output of wind farm in the required time. In this paper, a method for calculating the energy storage capacity of large wind farm based on CFD technology is proposed. As a branch of computational fluid mechanics, the technology of CFDF computing fluid dynamics technology is used as a branch of computational fluid dynamics, which provides a solution for calculating the optimal energy storage capacity of wind farm. Based on Renault similarity theory, using computer technology and WT software to simulate the actual wind field, a computational model is established to calculate the optimal energy storage capacity from the direction of computational fluid dynamics. On the basis of air pressure, air density, power curve, wind measurement data of wind tower, the distribution of wind energy resources in the whole wind field is obtained by computer technology and WT software in the core of CFD. Combined with the power curve, the variation of wind at each station point, the output power, the expected value of output power and so on are calculated. The optimal energy storage capacity for each station is calculated according to the capacity calculation formula of energy storage equipment, Sn 脳 E 脳 H. the results obtained by this method are more close to the real situation, in order to provide a decision reference for the investment, development and design of wind farm energy storage.
【学位授予单位】:上海交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TM614
【参考文献】
相关期刊论文 前10条
1 李成;杨秀;张美霞;王海波;叶建华;陈洁;;基于成本分析的超级电容器和蓄电池混合储能优化配置方案[J];电力系统自动化;2013年18期
2 赵斌;陈红宝;;民勤红沙岗百万千瓦级风电基地风机排布优化研究[J];甘肃水利水电技术;2013年09期
3 张晓东;;风电场风资源计算的CFD模型研究[J];现代电力;2013年04期
4 李辰奇;许昌;杨建川;甄文忠;刘德有;郑源;;基于CFD的复杂地形风能分布研究[J];上海理工大学学报;2013年03期
5 国家电网公司"电网新技术前景研究"项目咨询组;王松岑;来小康;程时杰;;大规模储能技术在电力系统中的应用前景分析[J];电力系统自动化;2013年01期
6 赫新;张来平;赵钟;邓小刚;;大型通用CFD软件体系结构与数据结构研究[J];空气动力学学报;2012年05期
7 张坤;毛承雄;谢俊文;陆继明;王丹;曾杰;陈迅;;风电场复合储能系统容量配置的优化设计[J];中国电机工程学报;2012年25期
8 卢继平;朱三立;韩涛;吕东;刘蕾;;风电场储能容量合理取值范围分析[J];重庆大学学报;2010年08期
9 陈毅东;杨育林;王立乔;贾志云;赵巍;万承宽;;风力发电最大功率点跟踪技术及仿真分析[J];高电压技术;2010年05期
10 阮军鹏;张建成;汪娟华;;飞轮储能系统改善并网风电场稳定性的研究[J];电力科学与工程;2008年03期
,本文编号:1581092
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1581092.html