电动汽车用永磁同步电动机的设计研究
发布时间:2018-03-15 22:02
本文选题:永磁同步电动机 切入点:齿槽转矩 出处:《华南理工大学》2014年硕士论文 论文类型:学位论文
【摘要】:随着全球能源和环境问题日益严峻,,发展新能源汽车势在必行。永磁同步电动机具有体积小、高效率、高功率密度、低损耗等优点,在电动汽车驱动电机产品中受到广泛的青睐。作为电动汽车驱动系统的核心部件,其性能的好坏直接决定了整车的性能。因此,精心设计性能优异的永磁同步电动机具有重要的现实意义和应用价值。本文较为系统地研究了永磁同步电动机的本体设计,包括设计方法、性能计算、有限元仿真、参数化分析、优化性能等。 首先,阐述了本文选题的背景意义,综述了电动汽车用永磁同步电动机国内外发展状况,同时介绍了永磁同步电动机的工作原理、常用永磁同步电动机的结构及其特点、PMSM稳态运行性能。 接着,根据电动汽车的整车参数,确定了其驱动电机性能指标,然后参照永磁同步电动机设计的原则,初步设计了一台30kW永磁同步电动机,详细分析了设计的过程和关键技术。借助于RMxprt对电机进行了参数性能计算,并在Ansys Maxwell进行有限元仿真,深入研究了电机空载、负载时的各项性能,结果令人满意,达到了设计指标。对电机进行了参数化分析,得到了一些结论。对比了表贴式和内置式PMSM的一些性能。 然后,基于能量法的齿槽转矩解析公式,探究了转子表面开槽、磁极圆周方向分段、磁极分组偏移三种削弱齿槽转矩的方法。每一种方法给出了相应优化参数的表达式。其中,以10极12槽PMSM验证了转子表面开槽的优化效果。将磁极圆周分段、磁极分组偏移方法应用到本文设计的表贴式PMSM,并对其进行了优化设计。结果表明,磁极圆周分段、磁极分组偏移两种方法都能有效抑制齿槽转矩、减小转矩波动,并且并不会影响原电机主要的性能。此外,磁极圆周分段还能减少永磁体的用量,节约了成本。 最后,以本文设计并优化后的电机为模型,通过对定子铁心齿部、轭部不同位置的有限元磁场仿真,得到了相应位置的磁密分量、磁密轨迹,并分析了各位置的磁化特点。在铁耗分离模型的基础上,将定子划分为不同区域,计算了各区域的铁耗密度,分析定子铁耗的分布。最后计算了整个电机定子的铁耗,并与有限元结果进行对比。
[Abstract]:With the global energy and environment problems becoming increasingly serious, it is imperative to develop new energy vehicles. PMSM has the advantages of small size, high efficiency, high power density, low loss and so on. As the core component of electric vehicle drive system, the performance of the electric vehicle directly determines the performance of the whole vehicle. The meticulous design of PMSM with excellent performance has important practical significance and application value. In this paper, the Noumenon design of PMSM is studied systematically, including design method, performance calculation, finite element simulation, etc. Parametric analysis, performance optimization, etc. First of all, the background significance of this paper is expounded, the development of PMSM used in electric vehicle is summarized, and the working principle of PMSM is also introduced. The structure and characteristics of permanent magnet synchronous motor (PMSM) are discussed. Then, according to the whole vehicle parameters of electric vehicle, the performance index of its driving motor is determined, and then a 30kW permanent magnet synchronous motor is preliminarily designed according to the design principle of permanent magnet synchronous motor (PMSM). The design process and key technology are analyzed in detail. The parameter performance of the motor is calculated by means of RMxprt, and the finite element simulation is carried out in Ansys Maxwell. The performance of the motor without load and load is deeply studied. The results are satisfactory. The parameters of the motor are analyzed, and some conclusions are obtained. The performances of the table-mounted PMSM and the built-in PMSM are compared. Then, based on the analytic formula of tooth slot torque based on the energy method, the slotting on the rotor surface and the circumferential direction of the magnetic pole are discussed. There are three ways to weaken the torque of the tooth slot by the shift of the magnetic pole block. Each method gives the expression of the corresponding optimization parameter. Where, the optimization effect of the slot on the rotor surface is verified by the PMSM with 10 poles and 12 slots, and the circle of the magnetic pole is segmented. The magnetic pole packet migration method is applied to the surface paste PMSM designed in this paper, and its optimization design is carried out. The results show that both the pole circumference and the magnetic pole packet migration can effectively suppress the tooth slot torque and reduce the torque ripple. In addition, the pole-circumferential segment can reduce the consumption of permanent magnet and save the cost. Finally, taking the motor designed and optimized in this paper as the model, the magnetic field of the stator core tooth and yoke is simulated by finite element method, and the magnetic density component and the magnetic density track are obtained. On the basis of the separation model of iron consumption, the stator is divided into different regions, the iron loss density of each region is calculated, and the distribution of stator iron loss is analyzed. Finally, the iron loss of the whole motor stator is calculated. The results are compared with the finite element results.
【学位授予单位】:华南理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM341
【参考文献】
相关期刊论文 前8条
1 刘婷;欧阳红林;黄守道;;基于重复单元削弱永磁风力发电机齿槽转矩[J];电工技术学报;2011年12期
2 唐任远;;稀土永磁电机发展综述[J];电气技术;2005年04期
3 郑金凤;胡冰乐;张翔;;纯电动汽车驱动电机应用概述[J];机电技术;2009年S1期
4 冯超;;2009——中国汽车工业发展的里程碑和新征程[J];汽车工程;2009年12期
5 刘金峰;张学义;扈建龙;;电动汽车驱动电机发展展望[J];农业装备与车辆工程;2012年10期
6 李鲲鹏,胡虔生,黄允凯;计及绕组电感的永磁无刷直流电动机电路模型及其分析[J];中国电机工程学报;2004年01期
7 张长文;;世界各国汽车排放法规概况[J];重型汽车;2005年06期
8 陈贵葆;;Nd-Fe-B稀土永磁同步电动机的优化设计研究[J];中小型电机;1993年02期
相关博士学位论文 前1条
1 曹先庆;混合动力电动汽车用永磁同步电动机驱动系统的研究[D];沈阳工业大学;2008年
本文编号:1616999
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1616999.html