含分布式电源的电网无功补偿优化方法研究
发布时间:2018-03-16 15:15
本文选题:分布式电源 切入点:地区电网 出处:《广东工业大学》2014年硕士论文 论文类型:学位论文
【摘要】:近年来,随着能源问题和环境问题日益突出,新能源的开发利用逐渐得到人们的重视,风机和小水电等分布式电源由于其自身的清洁性及可再生性等优点,使得其越来越多的被引入到电力系统当中。而电力系统的无功优化是保证电网安全、经济运行的有效手段,也是降低网络损耗、提高电压质量的重要措施。因此,含分布式电源的电网无功优化研究有着重要意义。 由于分布式电源的环保无污染等优点,近年来分布式发电技术越来越普及,本文详细分析了分布式发电技术的特点以及在并入电网之后对电网电压,网损和电能质量的影响。选取了风机、小水电和光伏这三种比较有代表性的分布式电源,介绍了他们的发电原理以及目前的研究现状。根据地区电网的实际特点,将小水电和风机并入到了电网中。通过分析小水电和风机的数学模型,将小水电作为PQ节点,风机作为PV节点,接入到一个实际的地区电网中,采用牛顿拉夫逊法,进行潮流的仿真计算。并且根据潮流计算的结果分析了分布式电源对地区电网电压,网损和电能质量的影响。 量子进化算法作为一种常见的人工智能算法,在进化过程中随着变量的增多会出现早熟现象和陷入局部最优等缺点。因此,本文提出了NW-QEA算法,在量子进化算法的迭代过程中加入了NW小世界的网络模型,采用随机化加边的方法动态地改变种群个体的邻域拓扑结构,从而增加了种群个体的多样性,大大提高了算法的全局探索能力。并且利用NW-QEA算法对IEEE-14节点和IEEE-57进行了无功优化的仿真,通过和其它算法的对比,证明了NW-QEA算法的可行性与有效性。 最后,对某地区实际电网的算例进行了仿真,此电网加入了风机和小水电这两种分布式电源,本文在此基础上,建立了含分布式电源的无功优化模型,利用NW-QEA算法对其进行了无功优化的仿真计算,并且与QEA算法进行对比,结果表明,NW-QEA算法在电力系统无功优化中具有很强的优越性,分布式电源能够对地区电网的无功优化产生很大的影响,从而保证了电网的安全经济运行。
[Abstract]:In recent years, with the increasingly prominent energy and environmental problems, the development and utilization of new energy has been gradually attached importance to, fan and small hydropower and other distributed power generation due to its own clean and renewable advantages. The reactive power optimization of the power system is an effective means to ensure the security and economic operation of the power network, and it is also an important measure to reduce network losses and improve the voltage quality. The research of reactive power optimization with distributed generation is of great significance. In recent years, the distributed generation technology has become more and more popular because of its advantages of environmental protection and no pollution. This paper analyzes the characteristics of the distributed generation technology and the voltage of the grid after being merged into the grid. The influence of network loss and power quality. Three representative distributed power sources, namely fan, small hydropower and photovoltaic, are selected, and their generation principle and current research status are introduced. According to the actual characteristics of regional power grid, By analyzing the mathematical model of small hydropower and fan, small hydropower is used as PQ node and fan as PV node, which is connected to a practical regional power network, and Newton Raphson method is used. According to the results of power flow calculation, the influence of distributed power generation on the voltage, network loss and power quality of regional power network is analyzed. As a common artificial intelligence algorithm, quantum evolutionary algorithm (QEA) has the disadvantages of precocity and local optimization with the increase of variables. Therefore, NW-QEA algorithm is proposed in this paper. In the iterative process of quantum evolutionary algorithm, the network model of NW small world is added, and the neighborhood topological structure of the population is dynamically changed by the method of randomization and edge addition, thus increasing the diversity of the population individual. The NW-QEA algorithm is used to simulate the reactive power optimization of IEEE-14 node and IEEE-57. The feasibility and effectiveness of NW-QEA algorithm are proved by comparing with other algorithms. Finally, the simulation of the actual power grid in a certain area is carried out, in which two kinds of distributed generation, fan and small hydropower, are added. Based on this, a reactive power optimization model with distributed generation is established in this paper. The NW-QEA algorithm is used to simulate the reactive power optimization and compared with the QEA algorithm. The results show that the NW-QEA algorithm has a strong superiority in the reactive power optimization of power system. Distributed generation can greatly affect the reactive power optimization of regional power network, thus ensuring the safe and economical operation of the power grid.
【学位授予单位】:广东工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM714.3
【参考文献】
相关期刊论文 前10条
1 陈琳;钟金;倪以信;甘德强;熊军;夏翔;;含分布式发电的配电网无功优化[J];电力系统自动化;2006年14期
2 唐剑东,熊信银,吴耀武,蒋秀洁;基于改进PSO算法的电力系统无功优化[J];电力自动化设备;2004年07期
3 赵亮;吕剑虹;;基于改进遗传算法的风电场多目标无功优化[J];电力自动化设备;2010年10期
4 刘红文;张葛祥;;基于改进量子遗传算法的电力系统无功优化[J];电网技术;2008年12期
5 李惠玲;盛万兴;张学仁;孟晓丽;;改进小生境遗传算法在电力系统无功优化中的应用[J];电网技术;2008年17期
6 李益华;林文南;李茂军;;基于改进Tabu搜索算法的区域电网无功优化[J];高电压技术;2008年07期
7 贾德香,唐国庆,韩净;基于改进模拟退火算法的电网无功优化[J];继电器;2004年04期
8 娄素华,吴耀武,彭磊,熊信银;量子进化算法在电力系统无功优化中的应用[J];继电器;2005年18期
9 朱向阳;;基于改进禁忌搜索算法的配电网电压无功优化控制[J];继电器;2006年14期
10 王瑞;林飞;游小杰;郑琼林;;基于遗传算法的分布式发电系统无功优化控制策略研究[J];电力系统保护与控制;2009年02期
,本文编号:1620475
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1620475.html