MEMS压电—磁电复合式微能源器件优化设计制造及其性能研究
发布时间:2018-03-30 11:48
本文选题:振动 切入点:压电式 出处:《中北大学》2014年硕士论文
【摘要】:无线传感网络节点的供电问题是影响无线传感网络发展的重要因素,传统电池供电存在体积大、寿命短等问题,无法满足传感网络节点对高性能供电电源的要求。振动式能量采集微能源具有高能量密度、长寿命、无污染、较强环境适应能力、易实现微小型化等优势,有望为海量无线网络传感节点提供稳定、可靠的能源供应。 本文研究的基于四悬臂梁-中心质量块基础结构MEMS压电-磁电复合式微能源器件可实现机械振动能-电能的转化,将压电发电与磁电发电两种能量转换方式相结合,提高了器件整体输出能量;采用的四悬臂梁-中心质量块基础结构谐振频率低,适于低频振动环境;通过分离悬臂梁上压电功能材料互异模态区域,实现压电敏感单元的串联形式以增大压电输出能量,提高了系统的总体能源密度与输出效率,为实现高输出能量密度的MEMS微能源器件设计拓展了新思路。 本文揭示了振动驱动下压电材料机电转换效应及电磁能量转换机理;构建基于四悬臂梁-中心质量块基础结构的压电-磁电复合式微能源器件结构模型,分析PZT压电敏感单元尺寸参数与感应线圈尺寸参数对结构输出性能的影响,结合MEMS微加工工艺限制条件,对压电敏感单元和感应线圈进行了优化设计,并优化设计了微能源器件MEMS加工工艺流程和版图;采用溶胶-凝胶技术,实现了厚约2μmPZT压电薄膜与3英寸Pt(111)/Ti/SiO_2/Si(100)基片的异质集成;突破微纳制造兼容关键技术,完成了四悬臂梁-中心质量块基础结构、感应线圈的加工、永久性磁铁与基础结构的二次集成,实现了基于四悬臂梁-中心质量块基础结构MEMS压电-磁电复合式微能源器件的可靠制造;搭建相应测试系统,,测试分析了MEMS压电-磁电复合式微能源器件的输出性能。测试结果表明:微能源器件的谐振频率为8Hz,在频率8Hz、加速度6g振动条件下,压电开路输出电压峰-峰值可达94mV,单个压电敏感单元单位面积有效输出电压达2.4V/cm~2,磁电开路输出电压峰-峰值可达8mV。
[Abstract]:The power supply problem of wireless sensor network nodes is an important factor affecting the development of wireless sensor network. Traditional battery power supply has the problems of large size and short life. It can not meet the requirements of sensor network nodes for high performance power supply. Vibratory energy acquisition micro-energy has the advantages of high energy density, long life, no pollution, strong adaptability to the environment, easy to realize micro-miniaturization, etc. It is expected to provide stable and reliable energy supply for massive wireless network sensor nodes. In this paper, MEMS piezoelectric / magnetoelectric composite micro-energy device based on four-cantilever beam and central mass block structure can realize the conversion of mechanical vibration energy and electric energy, combining piezoelectric generation with magnetoelectric power generation. The output energy of the device is improved, the resonant frequency of the four-cantilever beam-center mass block foundation is low, which is suitable for the low-frequency vibration environment, and the region of the different modes of piezoelectric functional materials on the cantilever beam is separated. In order to increase the output energy of piezoelectric sensor in series, the total energy density and output efficiency of the system are improved, and a new idea is developed for the design of MEMS micro-energy device with high output energy density. In this paper, the electromechanical conversion effect and electromagnetic energy conversion mechanism of piezoelectric materials driven by vibration are revealed, and the structure model of piezoelectric magnetoelectric composite micro-energy devices based on four-cantilever beam-center mass block foundation is constructed. The effects of the size parameters of PZT piezoelectric sensing unit and induction coil on the output performance of the structure are analyzed. The piezoelectric sensing element and induction coil are optimized and designed in combination with the limiting conditions of MEMS micromachining technology. The fabrication process and layout of micro energy device MEMS are optimized and designed, and the heterogeneous integration of about 2 渭 mPZT piezoelectric thin film with 3 inch Ptt111 / Ti / Si / Si / Si / 100 substrate is realized by using sol-gel technology, and the key technology of micro / nano fabrication compatibility is broken through. Completed four cantilever beam-center mass block infrastructure, induction coil processing, permanent magnet and the secondary integration of the infrastructure, The MEMS piezoelectric / magnetoelectric composite micro-energy device based on the four-cantilever beam-center mass block foundation structure is realized, and the corresponding testing system is built. The output performance of MEMS piezoelectric / magnetoelectric composite micro energy device is measured and analyzed. The results show that the resonant frequency of the micro energy device is 8 Hz, and the frequency is 8 Hz and the acceleration is 6 g. The open circuit output voltage peak of piezoelectric is up to 94 MV, the effective output voltage per unit area of a single piezoelectric sensor is 2.4 V / cm ~ (2), and the peak value of magnetoelectric output voltage is 8 MV.
【学位授予单位】:中北大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM619
【参考文献】
相关期刊论文 前2条
1 方华斌;刘景全;徐峥谊;王莉;陈迪;蔡炳初;刘悦;;PZT厚膜拾振器微图形化工艺研究[J];微细加工技术;2005年04期
2 王佩红;戴旭涵;赵小林;;微型电磁式振动能量采集器的研究进展[J];振动与冲击;2007年09期
本文编号:1685779
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1685779.html