铅碳电极的制备及其析氢抑制剂的研究
本文选题:铅碳电池负极 切入点:HRPSoC 出处:《哈尔滨工业大学》2014年硕士论文
【摘要】:为了缓解能源危机和环境污染,世界各国都开始发展新能源汽车,而混合动力车是其中一个很重要的部分,传统铅酸电池由于价格低,大电流放电性能好在轻混动力车上得到了应用,但是传统铅酸电池的负极在HRPSoC工况下容易不可逆硫酸盐化,从而使得铅酸电池的寿命很短,而铅碳电池可以有效地延缓负极的不可逆硫酸盐化。 本文首先研究了单种碳材料P1和P2对电池负极性能的影响,结果表明碳材料P1和P2的加入可以明显地提高电池负极的HRPSoC循环性能,在碳含量0.3%~1.2%范围内时,添加0.9%的P2电池的第一次HRPSoC循环次数最多,为18489次,碳材料P1和P2的加入同时也提高了负极的倍率性能。 研究混合碳材料P2和石墨、P2和P3对铅碳电池负极性能的影响,结果表明在0.9%P2基础上添加0.1%~0.5%的石墨时,随着石墨含量的增加,电池负极板的析氢加剧,电池的HRPSoC循环性能变差。在P2和P3总含量为0.9%时,随着P3含量的增加,电池负极板的析氢加剧,电池的HRPSoC循环性能变差。通过总结所使用碳材料对电池HRPSoC循环性能的影响,认为加到负极板中的碳材料首先应该与铅和硫酸铅具有良好的结合力,其次碳材料应该具有较大的比表面积和较大的孔容积,,再次,碳材料应具有高的导电性和较好的电容性。 通过添加硫化铋、二氧化锡、碳/硫化铋复合材料、碳/二氧化锡复合材料和沉积了铟、锡和铅的碳材料来抑制负极板的析氢,并研究它们对电池负极性能的影响。结果表明,它们均可在一定程度上抑制负极板的析氢,但是掺入硫化铋后电池负极的HRPSoC循环性能出现了一定的下降,掺入10%(占碳材料质量分数)二氧化锡的电池负极的HRPSoC循环性能提高了很多,第一次HRPSoC循环次数为28191次,而掺入3%和17%二氧化锡的电池负极的HRPSoC循环性能不佳。添加沉积铅和锡的碳材料的电池负极的HRPSoC循环性能有了较大提高,添加沉积铟的碳材料的电池负极的HRPSoC循环性能与空白电池接近。添加碳/硫化铋复合材料和碳/二氧化锡复合材料的电池负极的HRPSoC循环性能得到了极大地提高,第一次HRPSoC循环次数分别达到了35487次和32534次,分别是未改性电池的1.9倍和1.8倍。
[Abstract]:In order to alleviate the energy crisis and environmental pollution, countries all over the world began to develop new energy vehicles, and hybrid vehicles are one of the most important parts. Traditional lead-acid batteries are low in price. High current discharge performance has been applied in light hybrid vehicle, but the negative electrode of traditional lead-acid battery is easily irreversibly sulfate salinized under HRPSoC condition, which makes the life of lead-acid battery very short. The lead-carbon battery can effectively delay the irreversible sulfate salinization of the negative electrode. In this paper, the effect of single carbon material P1 and P2 on the negative electrode performance of the battery is studied. The results show that the addition of P1 and P2 can obviously improve the HRPSoC cycle performance of the battery negative electrode, when the carbon content is 0.3% or 1.2%, The addition of 0.9% P2 battery has the highest number of first HRPSoC cycles (18489 cycles). The addition of carbon materials P1 and P2 also improves the performance of the negative electrode. The effects of mixed carbon materials P2 and graphite P 2 and P 3 on the negative electrode properties of lead-carbon batteries were studied. The results showed that the hydrogen evolution of the anode plates increased with the increase of graphite content when 0.1% graphite was added on the basis of 0.9%P2. When the total contents of P2 and P3 are 0.9g, with the increase of P3 content, the hydrogen evolution of the negative plate of the battery increases, and the HRPSoC cycle performance of the battery becomes worse. The effect of the carbon materials used on the HRPSoC cycle performance of the battery is summarized by summarizing the effect of the carbon materials used on the cycle performance of the battery. It is considered that the carbon material added to the negative plate should have good binding force with lead and lead sulfate, and the carbon material should have larger specific surface area and larger pore volume. Thirdly, the carbon material should have high conductivity and good capacitance. By adding bismuth sulfide, tin dioxide, carbon / bismuth sulfide composites, carbon / tin dioxide composites and carbon materials deposited with indium, tin and lead to suppress hydrogen evolution in negative plates, The results show that they can inhibit the hydrogen evolution of the negative plate to some extent, but the HRPSoC cycle performance of the negative electrode of the battery decreases after the addition of bismuth sulfide. The HRPSoC cycle performance of the negative electrode of the battery doped with 10% tin dioxide (mass fraction of carbon material) has been greatly improved, with the first HRPSoC cycle being 28191 times. However, the HRPSoC cycle performance of the negative electrode doped with 3% and 17% tin dioxide is not good. The HRPSoC cycle performance of the negative electrode of the battery with the addition of carbon materials deposited by lead and tin has been greatly improved. The HRPSoC cycling performance of the negative electrode of the carbon material with indium deposition is similar to that of the blank battery. The HRPSoC cycle performance of the negative electrode of the battery with the addition of carbon / bismuth sulfide composite and carbon / tin dioxide composite is greatly improved. The number of first HRPSoC cycles reached 35487 and 32534 respectively, 1.9 times and 1.8 times as much as that of unmodified batteries, respectively.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM912.1
【共引文献】
相关会议论文 前1条
1 裴锋;贾匴路;吴越;张文华;吁霁;;废旧磷酸亚铁锂电池的回收技术[A];2013年江西省电机工程学会年会论文集[C];2013年
相关博士学位论文 前4条
1 郑丹;电动汽车对电力系统的影响以及交互作用研究[D];华南理工大学;2013年
2 周南;碳包覆磷酸铁锂薄膜及多层结构磷酸铁锂介晶材料的制备及其电化学性能研究[D];中南大学;2013年
3 李国春;硫基复合材料制备与电化学性能研究[D];南开大学;2013年
4 刘颖;基于Bir-MnO_2的复合电极材料设计、制备及电容性能研究[D];兰州大学;2014年
相关硕士学位论文 前10条
1 王宏伟;电动摩托车用六相无刷电机控制系统的研究[D];大连理工大学;2010年
2 付毓瑞;我国新能源汽车在欧洲市场的前景及营销策略[D];江西财经大学;2010年
3 曹国强;混合动力车用复合电源系统开发与实验验证[D];吉林大学;2011年
4 李光;影响我国电动汽车产业发展的关键因素研究[D];武汉理工大学;2011年
5 徐舟;镍氢动力电池在混合动力大巴上的应用研究[D];中南大学;2011年
6 钟艮林;基于ZigBee技术的蓄电池在线监测系统的研究与设计[D];安徽理工大学;2010年
7 陈佰爽;析氢抑制剂对Pb-C电池负极电化学性能的影响[D];哈尔滨工业大学;2011年
8 王雪非;基于工况仿真的锂动力电池寿命研究[D];哈尔滨理工大学;2011年
9 尹衡;超声法制备硫化铋纳米材料及其表征[D];武汉理工大学;2009年
10 张会强;HEV动力电池性能测试平台控制系统的设计[D];哈尔滨理工大学;2009年
本文编号:1697136
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1697136.html