当前位置:主页 > 科技论文 > 电力论文 >

无轴承永磁同步电机非线性控制系统的研究

发布时间:2018-04-21 18:30

  本文选题:无轴承永磁同步电机 + 转子初始位置辨识 ; 参考:《华南理工大学》2014年博士论文


【摘要】:无轴承永磁同步电机(Bearingless Permanent Magnet Synchronous Motor(BPMSM))是一种新型的集旋转与转子自悬浮功能于一体的电机。具有无摩擦、无磨损、不需润滑和密封、精度高、维护小,成本低等优点,且不需激磁电流,因此在化学泵、蜗轮分子泵、血泵、高速磨粉机、压缩机及高速飞轮等设备广泛应用。与普通永磁同步电机相比,BPMSM稳定运行时转子处于自悬浮状态,外界扰动、参数摄动等因素使转子位置、速度及径向位移更容易产生振动和突变。本文围绕BPMSM悬浮力产生机理对BPMSM数学模型、非线性解耦控制,无位置传感运行进行了深入的理论分析与试验研究。 以面贴式四极转矩绕组和二极悬浮绕组BPMSM为例,从麦克斯韦张量法出发,对悬浮力产生机理进行深入分析,考虑永磁体、转矩绕组、悬浮绕组和转子偏心等因素,分析和建立了悬浮力数学模型及电磁转矩数学模型,同时从转子动力学出发,建立转子运动方程及系统运动方程。 研究了基于转子磁场定向控制的非线性解耦,控制系统采用PID控制悬浮绕组的径向悬浮力,采用PI控制转速,但在负载扰动的时候动态性能差,因此首次将分数阶PIλ控制器应用到BPMSM控制中,分数阶控制器具有很多整数阶系统无法实现的优越性,仿真实验表明采用分数阶PIλ控制器的BPMSM控制系统比采用整数阶PI控制BPMSM控制系统具有更快的响应速度、更好的抗干扰性能,鲁棒性好。 为了解决系统在系统参数和扰动变化产生的抖振问题,将智能控制和分数阶结合起来,,设计了基于神经网络的分数阶滑模控制器,控制悬浮绕组的径向悬浮力,以减少抖振的发生。仿真和实验结果说明了神经网络分数阶滑模控制系统不但能削减抖震,而且能达到较高的综合控制性能。研究结果为智能分数阶控制器在BPMSM悬浮控制系统中的应用提供了理论依据,为进一步开展BPMSM高速运行稳定悬浮奠定基础。 针对BPMSM无位置传感器运行的要求,提出了基于滑模观测器的BPMSM无传感器运行控制研究并通过实验验证BPMSM无位置传感器运行。 最后归纳了本文的研究成果和创新工作,并对进一步的研究提出了建议。
[Abstract]:Bearingless Permanent Magnet Synchronous Motor (BPMS MMC) is a new type of motor with the function of rotation and rotor self-suspension. With no friction, no wear, no lubrication and sealing, high accuracy, small maintenance, low cost, and no magnetic current, so in chemical pump, worm wheel molecular pump, blood pump, high speed grinding machine, Compressor and high-speed flywheel and other equipment widely used. Compared with ordinary permanent magnet synchronous motor (PMSM), the rotor is in self-suspension state when BPMSM is running stably, and the external disturbance and parameter perturbation make the rotor position, speed and radial displacement more prone to vibration and sudden change. In this paper, the mathematical model of BPMSM, nonlinear decoupling control and sensorless operation of BPMSM are studied theoretically and experimentally around the mechanism of BPMSM suspension force generation. Taking the surface mount quadrupole torque winding and the two-pole suspension winding BPMSM as examples, starting from Maxwell Zhang Liang's method, the mechanism of levitation force is deeply analyzed, and the factors such as permanent magnet, torque winding, suspension winding and rotor eccentricity are considered. The suspension force mathematical model and the electromagnetic torque mathematical model are analyzed and established. At the same time, the rotor motion equation and the system motion equation are established according to the rotor dynamics. The nonlinear decoupling based on rotor flux oriented control is studied. The control system uses PID to control the radial levitation force of the suspension winding and Pi to control the rotational speed, but the dynamic performance is poor when the load is disturbed. Therefore, the fractional Pi 位 controller is applied to BPMSM control for the first time. The fractional order controller has many advantages that can not be realized by integer order system. The simulation results show that the BPMSM control system with fractional Pi 位 controller has faster response speed, better anti-jamming performance and better robustness than the integer Pi control BPMSM control system. In order to solve the buffeting problem caused by the variation of system parameters and disturbances, a fractional sliding mode controller based on neural network is designed to control the radial levitation force of suspension windings by combining intelligent control with fractional order. To reduce the occurrence of buffeting. Simulation and experimental results show that the neural network fractional sliding mode control system can not only reduce shaking, but also achieve a higher comprehensive control performance. The results provide a theoretical basis for the application of intelligent fractional-order controller in BPMSM suspension control system, and lay a foundation for the further development of high-speed and stable suspension of BPMSM. In order to meet the requirements of BPMSM sensorless operation, a sliding mode observer based BPMSM sensorless operation control is proposed. The experimental results show that the BPMSM sensorless operation is sensorless. Finally, this paper summarizes the research results and innovative work, and puts forward suggestions for further research.
【学位授予单位】:华南理工大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TM341

【参考文献】

相关期刊论文 前10条

1 王凤翔,郑柒拾,王宝国;不同转子结构无轴承电动机的磁悬浮力分析与计算[J];电工技术学报;2002年05期

2 邓智泉,张宏全,王晓琳,严仰光;基于气隙磁场定向的无轴承异步电机非线性解耦控制[J];电工技术学报;2002年06期

3 杨国福;郭芙军;;感应型无轴承电动机的模糊神经网络控制系统[J];电气应用;2006年12期

4 蔡国洋;黄守道;;无轴承异步电机气隙磁场辨识方法与应用[J];电机与控制学报;2007年02期

5 年珩;贺益康;;永磁型无轴承电机控制系统研究[J];电力电子技术;2007年02期

6 孟令孔;邓智泉;王晓琳;仇志坚;;无轴承永磁同步电机悬浮子系统H_2/H_∞混合控制[J];电气传动;2007年02期

7 张建生;张钢;汪希平;;无轴承电机中磁浮系统的互补PWM控制器研究[J];电子工程师;2005年12期

8 张宏荃,邓智泉,王晓琳,严仰光;无轴承异步电动机的系统实现[J];哈尔滨工业大学学报;2004年11期

9 黄守道;蔡国洋;高剑;;无轴承异步电机的定子磁场定向解耦控制[J];湖南大学学报(自然科学版);2007年05期

10 邓智泉,何礼高,严仰光;无轴承交流电机的原理及应用[J];机械科学与技术;2002年05期

相关博士学位论文 前5条

1 孙晓东;无轴承永磁同步电机及其非线性控制研究[D];江苏大学;2011年

2 刘羡飞;磁悬浮开关磁阻电机基本参数与控制方法的研究[D];江苏大学;2008年

3 严欣平;无轴承永磁同步电机电磁设计与控制策略研究[D];重庆大学;2008年

4 张碧陶;智能分数阶滑模控制及系统参数整定方法的研究[D];华南理工大学;2012年

5 王瑞萍;基于分数阶控制器的永磁同步电动机速度控制研究[D];华南理工大学;2012年



本文编号:1783625

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1783625.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0b24e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com