多元能源发电系统频率波动仿真算法及实现
本文选题:多元能源 + 风电并网 ; 参考:《华北电力大学》2014年硕士论文
【摘要】:化石能源危机、全球气候变暖以及环境污染是当今世界各国共同关注的焦点。不断寻找能够代替化石能源的清洁能源,改变能源结构,是各国应对这些问题的重要战略途径。其中,风力、光伏等新能源发电正成为当前新能源开发利用的主要方式。随着新能源发并网容量的不断增加,电力系统的发电方式呈多元化发展。然而大规模新能源并网给电力系统频率控制带来了新的挑战。 与传统能源发电相比,风电、光伏等清洁能源发电的主要特点就是一次能源不可控导致的随机波动性和间歇性。随着新能源发电渗透率逐渐增加,传统电力系统中调整发电量以匹配负荷变化的频率控制模式已难以满足系统频率稳定要求。加之核能发电投资大、回报率高,通常也不参与频率控制,这更加重了电力系统频率控制的难度。因此,在传统能源调控方式有限的情况下,有必要提高新能源参与系统频率控制的能力。 本文根据各国风电并网导则对风电并网调频提出的要求,重点研究了国内外现有风力发电机控制技术,并探索风电参与系统频率控制的方法,与火电、水电构成多元能源频率控制系统,利用准稳态法建立各类型机组多元能源频率控制模型,并利用MATLAB仿真平台建立了专门的中长期时间尺度系统频率波动仿真系统,以深入研究影响电力系统频率控制的各种因素。 论文首先介绍了多元能源发电系统的发展现状以及进行动态频率仿真问题的需求,就频率受到扰动后动态变化过程分析火电机组、水电机组和核电机组的频率控制特性,随后详述了风电场参与系统频率控制方法。根据各类型机组的频率控制特性建立基于准稳态法的频率控制模型,结合频率控制仿真中功能需求,利用MATLAB仿真平台建立了中长期时间尺度系统频率波动仿真系统,从而细化分析影响多元能源发电系统频率控制质量的因素:多区域协调频率控制、多元能源频率控制和备用调整容量。本文通过建立三个区域的多元能源发电系统,从影响频率控制的不同因素分别考虑,对比分析多元能源电力系统的频率控制仿真效果、各机组出力情况和频率控制指标。仿真算例表明本文所提出的仿真系统能够进行中长期时间尺度系统频率波动仿真,对于研究频率控制影响因素具有显著效果,且具有计算精度高,计算速度快等特点,能满足实际工程应用的要求。
[Abstract]:The crisis of fossil energy, global warming and environmental pollution are the focus of the world. To find clean energy instead of fossil energy and to change energy structure is an important strategic approach for countries to deal with these problems. Among them, wind power, photovoltaic and other new energy generation is becoming the main way of development and utilization of new energy. With the continuous increase of new energy generation and grid capacity, the power system power generation mode has diversified development. However, the power system frequency control is challenged by large-scale new energy grid connection. Compared with traditional energy generation, the main characteristics of clean energy generation such as wind power, photovoltaic are the random volatility and intermittency caused by the uncontrollable primary energy. With the increase of new energy generation permeability, it is difficult to meet the requirements of frequency stability in the traditional frequency control mode of power system, which adjusts the power generation to match the load change. In addition, nuclear power generation investment, high rate of return, usually do not participate in frequency control, which makes it more difficult to control the power system frequency. Therefore, it is necessary to improve the ability of new energy to participate in system frequency control. In this paper, according to the requirements of wind power connection and frequency modulation for wind power connection in various countries, this paper mainly studies the existing wind turbine control technology at home and abroad, and explores the methods of wind power participating in system frequency control, and thermal power. The multi-energy frequency control system is composed of hydropower, the multi-energy frequency control model of various types of units is established by using quasi-steady state method, and a special simulation system of medium and long-term time-scale system frequency fluctuation is established by using MATLAB simulation platform. In order to study the power system frequency control factors. Firstly, the paper introduces the development status of multi-energy power generation system and the demand of dynamic frequency simulation, and analyzes the frequency control characteristics of thermal power unit, hydropower unit and nuclear power unit after frequency disturbance. Then, the method of frequency control for wind farm is described in detail. According to the frequency control characteristics of various types of units, a frequency control model based on quasi steady state method is established. According to the functional requirements of frequency control simulation, a medium and long term time-scale system frequency fluctuation simulation system is established by using MATLAB simulation platform. The factors that affect the frequency control quality of multi-energy generation system are analyzed in detail, such as multi-region coordinated frequency control, multi-energy frequency control and reserve adjusting capacity. In this paper, by establishing the multi-energy power generation system in three regions, considering the different factors that affect the frequency control, the simulation results of the frequency control of the multi-energy power system, the output of each unit and the frequency control index are compared and analyzed. The simulation example shows that the proposed simulation system can simulate the frequency fluctuation of the medium and long term time-scale system, which has remarkable effect on the study of the influencing factors of frequency control, and has the characteristics of high calculation precision and fast calculation speed. Can meet the requirements of practical engineering applications.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM61
【参考文献】
相关期刊论文 前10条
1 陆超,唐义良,谢小荣,崔文进;仿真软件MATLABPSB与PSASP模型及仿真分析[J];电力系统自动化;2000年09期
2 乔颖;鲁宗相;;考虑电网约束的风电场自动有功控制[J];电力系统自动化;2009年22期
3 林今;孙元章;P.SФRENSEN;李国杰;程林;黎雄;;基于频域的风电场功率波动仿真 (一)模型及分析技术[J];电力系统自动化;2011年04期
4 于大洋;韩学山;梁军;宋曙光;;基于NASA地球观测数据库的区域风电功率波动特性分析[J];电力系统自动化;2011年05期
5 白永祥;房大中;朱长胜;;内蒙古电网风电场调度管理技术支持系统设计与应用[J];电力系统自动化;2011年07期
6 李静坤;姚秀萍;旷瑞明;张鹏飞;李长军;张彦军;;新疆风电场有功功率控制策略与实现[J];电力系统自动化;2011年24期
7 杨卫东,徐政,韩祯祥;NETOMAC在直流输电系统仿真研究中的应用[J];电力自动化设备;2001年04期
8 李广凯,李庚银;电力系统仿真软件综述[J];电气电子教学学报;2005年03期
9 林良真,叶林;电磁暂态分析软件包PSCAD/EMTDC[J];电网技术;2000年01期
10 孙华东;汤涌;马世英;;电力系统稳定的定义与分类述评[J];电网技术;2006年17期
相关博士学位论文 前1条
1 李雪峰;互联电力系统的AGC容量需求和控制策略研究[D];大连理工大学;2010年
,本文编号:1792087
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1792087.html