当前位置:主页 > 科技论文 > 电力论文 >

高速铁路牵引网防雷的研究

发布时间:2018-05-08 14:21

  本文选题:高速铁路 + 绕击闪络率 ; 参考:《兰州交通大学》2014年硕士论文


【摘要】:随着我国高速铁路的快速发展,牵引供电系统的安全问题越来越得到重视。近年来高铁遭受雷击的事故频有发生,为了最大限度地避免雷击给铁路运行带来影响,高速铁路牵引网雷电防护的课题应得到更多的关注。 首先,对雷电机理以及雷电参数等基础理论知识进行详细阐述。同时介绍计算线路绕击跳闸率的方法,并对应用情况以及每种方法的优缺点进行简单介绍。 其次,在工程防雷计算中,应用EGM(Electrical Geometry Model,电气几何模型)理论为基础的绕击跳闸率计算方法主要有暴露距离计算方法和暴露弧投影计算方法。但是暴露距离计算方法,不考虑雷电先导带有入射角的情况,使得计算结果和实际雷击情况不相符;暴露弧投影计算由于将弧线当成直线来进行投影,使得它的计算结果偏大。应对这些不足,在考虑存在高架桥路段以及雷电先导带有入射角的情况下,建立高速铁路的EGM,并将暴露距离的概念延伸至带有入射角度的EGM中,从而得到高速铁路的受雷面积,由此推导出雷电先导以某一雷电入射角绕击高速铁路时的绕击闪络率公式,通过计算,得出入射角对高速铁路绕击闪络率的影响。 同时,论文根据所推导出来的雷电绕击入射角范围,以及雷电先导以某一确定入射角绕击高速铁路时的闪络率,对在绕击范围内的单个绕击闪络率进行累加,从而得到雷电入射角改变时在整个平面内改变时,高速铁路绕击闪络率计算公式。通过计算、比较,改进暴露距离模型后的计算方法克服了暴露弧投影计算结果偏大的缺点,同时相比暴露距离更接近雷击实际情况,为高速铁路牵引网防雷提供重要参考作用。 最后,借助PSCAD软件,建立仿真模型,,对接触线的耐雷水平进行仿真统计,得到支柱冲击接地电阻,高架桥高度,有无装设避雷器等因素对接触网耐雷水平造成的影响。并在基于EGM的基础上提出考虑高架桥高度时避雷线的合适架设高度公式。根据计算和仿真结果,给高速铁路防雷提出建议。
[Abstract]:With the rapid development of high-speed railway in China, more and more attention has been paid to the safety of traction power supply system. In recent years, the accidents of high-speed railway suffered by lightning strike occur frequently. In order to avoid the impact of lightning strike on railway operation to the maximum extent, the subject of lightning protection of high-speed railway traction network should be paid more attention to. Firstly, the basic theoretical knowledge of lightning mechanism and lightning parameters are described in detail. At the same time, this paper introduces the method of calculating the tripping rate, and introduces the application and the advantages and disadvantages of each method. Secondly, in the calculation of lightning protection in engineering, the calculation methods of tripping rate based on the theory of EGM(Electrical Geometry Model mainly include the calculation method of exposure distance and the method of projection calculation of exposed arc. However, the calculation method of exposure distance does not consider the situation that the lightning pilot has an incident angle, which makes the calculation result not consistent with the actual lightning stroke. Because the arc is projected as a straight line, the calculation result of the exposed arc projection is too large. To deal with these shortcomings, considering the existence of viaduct section and lightning forerunner with incident angle, the EGMs of high-speed railway are established, and the concept of exposed distance is extended to EGM with incident angle, thus the lightning area of high-speed railway is obtained. This paper derives the formula of flashover rate when lightning forerunner strikes high speed railway with a certain lightning incident angle, and through calculation, the influence of incident angle on flashover rate of high speed railway is obtained. At the same time, according to the range of incidence angle and the flashover rate of lightning forerunner in a certain incident angle, the single flashover rate is accumulated in the range. The formula for calculating the flashover rate of high speed railway is obtained when the incident angle of lightning changes in the whole plane. Through calculation and comparison, the calculation method after improving the model of exposure distance overcomes the shortcoming that the calculation result of exposure arc projection is too large, and at the same time, it is closer to the actual situation of lightning stroke than the exposed distance, which provides an important reference for the lightning protection of traction network of high-speed railway. Finally, with the help of PSCAD software, the simulation model is established, and the lightning resistance of the contact line is simulated. The impact grounding resistance of the pole, the height of the viaduct and the lightning arrester are obtained, which affect the lightning resistance of the catenary. On the basis of EGM, the suitable height formula of lightning protection line considering the height of viaduct is put forward. According to the results of calculation and simulation, some suggestions on lightning protection of high speed railway are put forward.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U229;TM862

【参考文献】

相关期刊论文 前10条

1 赵玉龙;刘光斌;余志勇;;雷电流数学模型MATLAB仿真分析[J];安全与电磁兼容;2012年01期

2 张飞舟,陈亚洲,魏明,刘尚合;雷电电流的脉冲函数表示[J];电波科学学报;2002年01期

3 李瑞芳;吴广宁;曹晓斌;马御棠;刘平;苏杰;;雷电流幅值概率计算公式[J];电工技术学报;2011年04期

4 樊春雷;郭小霞;李汉卿;;高速铁路暂态模型搭建与仿真分析[J];电气化铁道;2011年05期

5 郭小霞;樊春雷;;高速铁路雷击跳闸率的研究[J];电气化铁道;2011年06期

6 王巨丰;刘峗;黎彬;陆俊杰;;基于向量电气几何模型的输电线路绕击耐雷性能研究[J];电网技术;2008年S2期

7 杜澍春;关于输电线路防雷计算中若干参数及方法的修改建议[J];电网技术;1996年12期

8 司马文霞,陈宁,许高峰,顾乐观;高杆塔大跨越输电线路防雷保护[J];重庆大学学报(自然科学版);2002年09期

9 李晓岚;尹小根;何俊佳;;击距系数的实验研究与理论分析[J];高电压技术;2008年01期

10 维列夏金,吴维韩;俄罗斯超高压和特高压输电线路防雷运行经验分析[J];高电压技术;1998年02期



本文编号:1861747

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1861747.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6321c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com