当前位置:主页 > 科技论文 > 电力论文 >

光储微电网系统的功率调控技术研究

发布时间:2018-06-11 21:32

  本文选题:分布式电源 + 有功平抑 ; 参考:《昆明理工大学》2014年硕士论文


【摘要】:随着全球能源的日益严峻和环境问题的日益严重,可再生能源的出现成为缓解当前能源和环境问题的重要途径之一,分布式发电和微电网是可再生能源利用的重要形式。在众多形式的分布式电源中,分布式光伏发电(distributed photovoltaic generation,简称DPVG)系统因其具有无污染、可再生、成本低、更灵活、更容易维护、模块化集成,容量可大可小,扩容方便,安装快速、可与建筑结合构成光伏建筑一体化等诸多优点而受到了各国电网机构的重视,并且对于发展清洁能源和节能减排起到很大的推动作用。然而,分布式光伏发电受太阳辐照度和天气变化的影响,本身具有很强的随机性、波动性和间歇性,且随着分布式光伏系统规模的不断扩大,上述随机性、波动性和间歇性势必会给电网的安全稳定运行带来冲击。因此,为了更加有效利用分布式光伏发电、提高供电可靠性和改善电能质量,本文采用光储微电网的形式将分布式光伏发电“友好地”接入电网,微电网系统由分布式光伏电源、储能以及本地负荷构成。 本文在光储微电网系统建模和功率调控方面进行了研究。分布式光储微电网系统建模是以三相光伏并网发电系统的控制策略为研究对象,分析其工作原理并建立数学模型,针对光伏阵列的最大功率点跟踪方法、两级式并网发电系统和储能充放电的控制策略等问题进行研究。而功率调控则是对光伏出力随机性、波动性的解决,所做工作包括了光伏并网发电、基于储能的有功平抑以及微电网发电系统的无功补偿特性。分布式光储微电网,不仅可以充分发挥光伏发电的资源、环境优势,还能有效克服光伏发电的随机波动特性,减少其对电网的冲击;而微电网发电系统的无功补偿特性则是为了保证整个微电网系统能够更经济、可靠地运行,不仅能实现微电网发电和无功补偿的统一控制,更让微电网系统具有了一定的低电压穿越能力。
[Abstract]:With the increasing severity of global energy and environmental problems, the emergence of renewable energy has become one of the most important ways to alleviate the current energy and environmental problems. Distributed generation and microgrid are important forms of renewable energy utilization. In many forms of distributed power generation, distributed photovoltaic generation system for distributed photovoltaic power generation has the advantages of pollution-free, renewable, low cost, more flexible, easier to maintain, modular integration, large and small capacity, convenient expansion, and quick installation. The integration of photovoltaic buildings and other advantages, which can be combined with buildings, has been attached great importance by the power grid organizations in various countries, and has played a great role in promoting the development of clean energy and energy saving and emission reduction. However, the distributed photovoltaic power generation is affected by solar irradiance and weather change, and has strong randomness, volatility and intermittency, and with the continuous expansion of the scale of distributed photovoltaic system, the randomness mentioned above. Volatility and intermittency will inevitably impact the safe and stable operation of the power grid. Therefore, in order to make more effective use of distributed photovoltaic power generation, improve the reliability of power supply and improve the power quality, this paper adopts the form of optical storage microgrid to connect distributed photovoltaic generation to the grid "friendly". The microgrid system is composed of distributed photovoltaic generation, energy storage and local load. In this paper, the modeling and power regulation of optical microgrid system are studied. The modeling of distributed optical storage microgrid system is based on the control strategy of three-phase photovoltaic grid-connected generation system. The working principle and mathematical model are analyzed and the maximum power point tracking method for photovoltaic array is established. The two-stage grid-connected generation system and the control strategy of energy storage charge and discharge are studied. The power regulation is to solve the randomness and volatility of photovoltaic power generation. The work includes photovoltaic grid-connected power generation, active power stabilization based on energy storage and reactive power compensation characteristics of micro-grid power generation system. Distributed optical microgrid can not only give full play to the resources and environmental advantages of photovoltaic power generation, but also effectively overcome the random fluctuation characteristics of photovoltaic power generation and reduce its impact on the grid. The reactive power compensation characteristic of micro-grid generation system is to ensure that the whole micro-grid system can operate more economically and reliably, and not only can realize the unified control of micro-grid generation and reactive power compensation. The microgrid system has a certain low voltage traversing capability.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM615

【参考文献】

相关期刊论文 前10条

1 王成山;肖朝霞;王守相;;微网中分布式电源逆变器的多环反馈控制策略[J];电工技术学报;2009年02期

2 陈昌松;段善旭;蔡涛;代倩;;基于模糊识别的光伏发电短期预测系统[J];电工技术学报;2011年07期

3 张浙波;刘建政;梅红明;;两级式三相光伏并网发电系统无功补偿特性[J];电工技术学报;2011年S1期

4 汤济泽;王丛岭;房学法;;一种基于电导增量法的MPPT实现策略[J];电力电子技术;2011年04期

5 王守相;李晓静;肖朝霞;王成山;;含分布式电源的配电网供电恢复的多代理方法[J];电力系统自动化;2007年10期

6 鲁宗相;王彩霞;闵勇;周双喜;吕金祥;王云波;;微电网研究综述[J];电力系统自动化;2007年19期

7 王成山;马力;王守相;;基于双PWM换流器的微型燃气轮机系统仿真[J];电力系统自动化;2008年01期

8 丁明;包敏;吴红斌;马婉玲;茆美琴;;复合能源分布式发电系统的机组组合问题[J];电力系统自动化;2008年06期

9 肖朝霞;王成山;王守相;;含多微型电源的微网小信号稳定性分析[J];电力系统自动化;2009年06期

10 张文亮;丘明;来小康;;储能技术在电力系统中的应用[J];电网技术;2008年07期

相关博士学位论文 前1条

1 陈昌松;光伏微网的发电预测与能量管理技术研究[D];华中科技大学;2011年



本文编号:2006765

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2006765.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ca6e7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com