基于市场的电力消费需求研究
发布时间:2018-06-23 04:58
本文选题:电力消费需求 + 经济增长因素 ; 参考:《浙江大学》2014年硕士论文
【摘要】:电力在当今社会发挥着越来越重要的作用。实施能源战略,促进能源发展方式的转变,都应坚持以电力为中心。“经济发展,电力先行”,电力消费与市场的关联愈加紧密。开展基于市场的电力消费需求研究,具有重要而深远的现实意义。 电力消费的市场影响因素众多,本文从宏观经济发展、产业结构调整、终端能源消费结构和大用户直购电四个维度,结合浙江省电力消费实际对各影响因素进行系统分析。分析其与各宏观经济指标的相关性,探讨其受产业结构调整的影响,给出能源结构的演变特征,分析了引入大用户直购电带来的影响。以此为基础建立电力消费需求的预测模型。 本文依据电力消费的市场影响因素,从经济增长、产业结构、终端能源结构三个方面(大用户直购电尚未大规模开展,暂不考虑)建立预测模型。本文研究表征经济增长的投资、消费、出口的经济指标的时间序列与电力消费时间序列的关系,运用向量自回归(VAR)模型探究电力需求与经济三大增长因素是否具有长期均衡关系,进而建立电力需求的预测模型。基于产业结构发展预测电力需求需要分别预测出各产业的用电量情况。本文采用灰色理论对产值单耗进行预测,引出最常用的灰色预测模型GM(1,1)模型,以及GM(1,1)模型的精确形式DGM(1,1)模型,和单序列一阶非线性动态模型灰色Verhulst模型,根据数列特点采用具体预测模型。基于终端能源结构的电力消费需求采用具有无后效性特点的马尔可夫预测,对终端能源结构演化进程进行建模。以误差平方和达到最小的准则,建立最优化模型求得转移概率矩阵,再求解某一状态下的概率,得到预测年份的终端能源概率进而求得电力消费量。对于以上几种方法,本文采用残差均方根法求得其各自的权重,进行组合预测。 本文以浙江数据为例,采用建立的预测模型,以浙江省1995-2012年电力消费数据为算例,编写预测程序,对浙江2013-2020年电力需求进行预测,并进行组合预测。 国外电力市场的经验表明,开展大用户直购电能够激发电力市场的潜力,是电力工业市场化改革的突破口。本文对大用户直购电模式的核心问题进行探讨,就大用户直购电的交易模式、输电模式、市场准入原则、条件及机制、输配电价等予以设计。比较各种方案,给出现行建议方案及发展方向。 本文为基于市场的电力消费需求相关研究提供借鉴与参考。
[Abstract]:Electric power is playing a more and more important role in today's society. To implement the energy strategy and promote the transformation of energy development mode, we should stick to the power as the center. "Economic development, electricity first", electricity consumption and the market more closely linked. The research of electricity consumption demand based on market has important and profound practical significance. There are many influential factors in the market of electric power consumption. This paper makes a systematic analysis of the influencing factors from the four dimensions of macro-economic development, industrial structure adjustment, end-energy consumption structure and direct electricity purchase by large users, combined with the actual situation of electricity consumption in Zhejiang Province. This paper analyzes the correlation between the energy structure and the macro-economic indexes, discusses the influence of industrial structure adjustment, gives the evolution characteristics of energy structure, and analyzes the influence brought by the introduction of direct electricity purchase by large customers. Based on this, a forecasting model of electricity consumption demand is established. According to the market influence factors of electric power consumption, this paper sets up a prediction model from three aspects: economic growth, industrial structure and terminal energy structure (the direct purchase of electricity by large users has not been carried out on a large scale for the time being). This paper studies the relationship between the time series of economic indicators representing economic growth and the time series of electricity consumption. The vector autoregressive (VAR) model is used to study whether there is a long-term equilibrium relationship between electricity demand and the three major economic growth factors, and then the forecasting model of power demand is established. It is necessary to forecast the electricity consumption of each industry based on the development of industrial structure. In this paper, the grey theory is used to predict the unit consumption of output value, and the most commonly used grey prediction model GM (1K1) model, as well as the exact form of the GM (1K1) model, and the grey Verhulst model of the first order nonlinear dynamic model of single sequence are derived. According to the characteristics of the series, the specific prediction model is adopted. Based on the terminal energy structure, the demand for electricity consumption is modeled by Markov prediction, which has the characteristics of no aftereffect, and the evolution process of the terminal energy structure is modeled. Based on the criterion of minimum error squared sum, the optimal model is established to obtain the transition probability matrix, and then the probability of a certain state is solved, and the terminal energy probability of the predicted year is obtained, and the power consumption is obtained. For the above methods, the residual mean square method is used to calculate their respective weights, and the combined prediction is carried out. Taking Zhejiang data as an example and taking Zhejiang power consumption data from 1995 to 2012 as an example, this paper makes a prediction program to forecast Zhejiang's electricity demand in 2013-2020 and carries out combined forecasting. The experience of foreign power market shows that direct purchase of electricity by large customers can stimulate the potential of electricity market, and it is a breakthrough in the market-oriented reform of electric power industry. In this paper, the core problems of direct electricity purchase by large users are discussed, and the transaction mode, transmission mode, market access principle, conditions and mechanism, transmission and distribution price are designed. Compare various schemes, give the current proposal and development direction. This paper provides reference and reference for the research of electricity consumption demand based on market.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:F426.61
【参考文献】
相关期刊论文 前10条
1 康重庆,夏清,张伯明;电力系统负荷预测研究综述与发展方向的探讨[J];电力系统自动化;2004年17期
2 王卿然;张粒子;谢国辉;;跨地区电力交易输电服务价格机制[J];电力系统自动化;2010年13期
3 朱凤娟;王主丁;陆俭;张巧霞;向婷婷;;考虑小区发展不均衡的空间负荷预测分类分区法[J];电力系统自动化;2012年12期
4 陈泽淮;张尧;武志刚;;RBF神经网络在中长期负荷预测中的应用[J];电力系统及其自动化学报;2006年01期
5 张伏生,刘芳,赵文彬,孙自安,蒋光英;灰色Verhulst模型在中长期负荷预测中的应用[J];电网技术;2003年05期
6 胡江溢;陈西颖;;对大用户直购电交易的探讨[J];电网技术;2007年24期
7 毛李帆;江岳春;龙瑞华;李妮;黄慧;黄珊;;基于偏最小二乘回归分析的中长期电力负荷预测[J];电网技术;2008年19期
8 周德强;;改进的灰色Verhulst模型在中长期负荷预测中的应用[J];电网技术;2009年18期
9 龙瑞华;毛弋;毛李帆;孙东杰;张芳明;张婷;陈宇哲;;基于诱导有序加权平均算子和马尔可夫链的中长期电力负荷组合预测模型[J];电网技术;2010年03期
10 牛东晓;成功;张博;王海峰;;基于MPCA-RBFNN的神经网络在中长期电力负荷预测中的应用[J];华北电力大学学报;2007年03期
,本文编号:2055879
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2055879.html