当前位置:主页 > 科技论文 > 电力论文 >

微波等离子体灯介质谐振腔优化设计

发布时间:2018-06-27 04:22

  本文选题:等离子体灯 + CST ; 参考:《电子科技大学》2014年硕士论文


【摘要】:微波等离子灯(Li ght Emi tting Plas ma)简称LEP,利用微波激发等离子体而发光,它是一种高效、节能、绿色、而且没有电极的光源,是上世纪90年代出现的一种新型电光源。由于微波等离子体灯的热光源发光特性,决定了它的光谱分布接近于太阳光谱,从而被国际公认为一种高效节能的高品质光源。微波等离子体灯的照明方案结合了系统可靠性,能源的利用效率,固态照明的控制系统和金属卤化物灯和高压钠灯的高流明输出。根据微波等离子体灯的工作机制划分,它可以分为两代结构。第一代的LEP由金属网罩制成的谐振腔、波导系统、灯泡、电机以及磁控管等部分组成。第一代产品的工作原理导致了它会产生一些问题,比如利用电机使灯泡高速旋转会导致系统不够稳定,灯泡在谐振腔内不能完全封闭等一系列问题,使产品难以得到量产、推广。第二代LEP取消了电机,磁控管被固态微波射频模块替代,金属波导系统和金属谐振腔被介质谐振腔替代,从而使系统的可靠性、灯的使用寿命都提高到很高的档次,完全具备了商业量产、应用的基本条件。本文用CST软件对微波等离子体灯的主体部分——介质谐振腔进行了仿真,并利用ANSYS软件对微波等离子体灯主体介质谐振腔的设计进行了热分析,对为其提供能量的射频模块以及介质谐振腔的优化设计具有指导意义。我所做的主要工作可以分为以下几个方面:1、研究了微波等离子体灯的工作原理和发光机理,在此基础上对微波等离子体灯的主体部件——介质谐振腔,进行了设计和制作。2、利用CST对微波等离子体灯的主体部分——介质谐振腔进行了仿真分析。主要分析了介质谐振腔内部场分布及S参数。3、利用ANSYS对介质谐振腔进行了热分析,为介质谐振腔的优化设计奠定了基础。4、对介质谐振腔的结构进行了优化设计并对优化改进后的介质谐振腔重新进行分析,得到分析结果。
[Abstract]:Microwave plasma lamp (Li ght Emi tting Plasma) is a kind of high efficiency, energy saving, green and no electrode light source. It is a new type of electric light source which appeared in 1990s. The spectral distribution of microwave plasma lamp is close to that of the sun because of its luminescence characteristics, which is recognized as a high efficiency and energy saving high quality light source. The lighting scheme of microwave plasma lamp combines system reliability, energy efficiency, control system of solid state lighting and high lumen output of metal halide lamp and high pressure sodium lamp. According to the working mechanism of microwave plasma lamp, it can be divided into two generations. The first generation LEP consists of resonator, waveguide system, light bulb, motor and magnetron. The working principle of the first generation of products leads to some problems, such as the use of motor to make the light bulb rotate at high speed will lead to the instability of the system, the light bulb can not be completely closed in the resonator, and so on, which makes it difficult for the product to get mass production. Promotion. The second generation LEP cancels the motor, the magnetron is replaced by the solid-state microwave RF module, the metal waveguide system and the metal resonator are replaced by the dielectric resonator, so that the reliability of the system and the service life of the lamp are improved to a very high level. Complete with commercial production, application of the basic conditions. In this paper, the dielectric resonator, the main part of microwave plasma lamp, is simulated by CST software, and the design of the main dielectric resonator of microwave plasma lamp is analyzed by ANSYS software. It has guiding significance for the optimization design of RF module and dielectric resonator. The main work I have done can be divided into the following aspects: 1. The working principle and luminescence mechanism of microwave plasma lamp are studied. On this basis, the dielectric resonator, the main component of microwave plasma lamp, is studied. The dielectric resonator, which is the main part of microwave plasma lamp, is simulated and analyzed by CST. The field distribution and S parameter. 3 inside the dielectric resonator are mainly analyzed. The thermal analysis of the dielectric resonator is carried out by using ANSYS. It lays a foundation for the optimization design of dielectric resonator. The structure of dielectric resonator is optimized and the optimized and improved dielectric resonator is analyzed again, and the results are obtained.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM923.02

【参考文献】

相关期刊论文 前1条

1 胡德霞,张绍纲;未来照明中的电光源[J];照明工程学报;1992年Z1期



本文编号:2072649

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2072649.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户89ba9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com