当前位置:主页 > 科技论文 > 电力论文 >

基于永磁同步电机的高精度电液伺服系统设计

发布时间:2018-06-27 19:35

  本文选题:电液伺服系统 + 永磁同步电机矢量控制 ; 参考:《哈尔滨工业大学》2014年硕士论文


【摘要】:电液控制系统作为一种机电液复合控制系统,具有效率高、带载能力强、响应速度快、功率密度大等优点,在现代民用领域和军事领域有广泛应用。本课题研究的基于永磁同步电机的电液伺服系统通过调节伺服电机的转速来控制定量泵的转速,进而实现精确的速度流量控制和压力控制。它克服了普通泵控电液系统和阀控电液系统成本高、效率低、维护困难等不足,,具有成本低、控制精度高、调速范围宽、节能效果好、自动化程度高等优点。并针对影响电液伺服系统性能的两个主要问题负载参数变化和压力脉动,提出了新的解决方法,通过实验验证了方法的有效性。 本文首先介绍了系统的软硬件整体方案,建立了电液伺服系统平台。并针对永磁同步电机控制算法进行了研究,建立了基于磁场定向矢量控制的永磁同步电机SVPWM仿真模型,为完成高性能电液伺服系统的速度控制和压力控制奠定了基础。 液压系统具有明显的非线性特点,系统参数的变化严重影响了系统的压力控制性能。本课题对液压被控系统建模分析,针对其特点提出了一种参数辨识方法,辨识出表征系统暂稳态性能的主要参数。并利用辨识结果,在PID控制器中对负载进行补偿,将非线性负载等效为线性负载,提高系统动态性能和稳态性能。该方法简单有效且易于实现,有利于工业生产智能化和自动化的实现。 对电液伺服系统平台主要参数进行测定,针对电流环、速度环和压力环分别设计调节器,通过合理设计控制系统使电液伺服系统具有合适的带宽、较高的稳态精度以及良好的抗扰性能,完成流量控制和压力控制并达到良好的暂稳态性能。 此外,电液伺服系统在稳压运行时常常会产生难以避免和消除的压力脉动,影响控制精度和系统稳定性。为了解决此问题,本课题采用高频脉动信号注入的方法来主动补偿固有压力脉动,减小压力纹波。通过实验证明了此方法能够有效减小压力脉动,提高系统控制精度,达到高精度压力控制的目的。
[Abstract]:As a kind of electrohydraulic compound control system, electro-hydraulic control system has many advantages, such as high efficiency, high load capacity, fast response speed and high power density. It is widely used in modern civil and military fields. The electro-hydraulic servo system based on permanent magnet synchronous motor (PMSM) is studied in this paper, which can control the rotational speed of the pump by adjusting the speed of the servo motor, and then realize the accurate control of velocity, flow and pressure. It overcomes the disadvantages of high cost, low efficiency, difficult maintenance and so on. It has the advantages of low cost, high control precision, wide speed range, good energy-saving effect and high degree of automation. Aiming at the two main problems affecting the performance of electro-hydraulic servo system, the change of load parameters and pressure fluctuation, a new solution is proposed, and the effectiveness of the method is verified by experiments. In this paper, the hardware and software of the system are introduced, and the platform of the electro-hydraulic servo system is established. The SVPWM simulation model of permanent magnet synchronous motor (PMSM) based on flux oriented vector control is established, which lays a foundation for the speed control and pressure control of high performance electro-hydraulic servo system. The hydraulic system has obvious nonlinear characteristics, and the change of system parameters seriously affects the pressure control performance of the system. In this paper, the hydraulic controlled system is modeled and analyzed, and a parameter identification method is proposed to identify the main parameters to characterize the transient performance of the system. Using the identification result, the load is compensated in the pid controller, the nonlinear load is equivalent to the linear load, and the dynamic and steady performance of the system is improved. This method is simple, effective and easy to realize, which is beneficial to the realization of intelligent and automatic industrial production. The main parameters of the electro-hydraulic servo system platform are measured. The regulator is designed for the current loop, the speed loop and the pressure loop, and the control system is designed reasonably to make the electro-hydraulic servo system have suitable bandwidth. High steady-state accuracy and good anti-disturbance performance, flow control and pressure control and achieve good transient performance. In addition, the electro-hydraulic servo system often produces the pressure pulsation which is difficult to avoid and eliminate in the steady voltage operation, which affects the control accuracy and the stability of the system. In order to solve this problem, the high frequency pulsation signal injection method is used to compensate the inherent pressure ripple and reduce the pressure ripple. The experimental results show that this method can effectively reduce the pressure fluctuation, improve the control accuracy of the system and achieve the purpose of high precision pressure control.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM341

【参考文献】

相关期刊论文 前10条

1 李训杰;耿连发;;现代永磁电动机交流伺服系统的发展和应用[J];电机技术;2009年05期

2 罗卫祥;于存贵;;永磁同步电机伺服系统串级PID矢量控制研究[J];电气传动;2011年12期

3 阚超;孔祥东;高英杰;何龙;安雅雅;康双琦;;一种液压控制辨识系统的开发[J];机床与液压;2006年08期

4 郑洪波;孙友松;;直驱式容积控制电液伺服系统及其发展现状[J];机床与液压;2011年02期

5 何志勇;何清华;李自光;;结构共振式滤波器试验研究[J];机床与液压;2011年05期

6 吴卫峰;;液压脉动抑制方法探讨[J];机械工程师;2006年01期

7 何志勇;何清华;李自光;;液压系统振动抑制方法研究[J];煤矿机械;2010年09期

8 刘苍山,王科社,李昌琪;液压脉动衰减器的动态品质[J];农业机械学报;1993年02期

9 韩俊伟;;电液伺服系统的发展与应用[J];机床与液压;2012年02期

10 陈庆,严金坤;优化方法在液压系统辨识中的应用[J];机械设计与研究;1985年03期

相关博士学位论文 前3条

1 张红娟;变转速泵控差动缸及低能耗注塑机技术研究[D];太原理工大学;2011年

2 鲁文其;永磁同步电机工程伺服系统若干关键技术研究[D];南京航空航天大学;2010年

3 苏文海;直驱式电液伺服转叶舵机关键技术及其控制系统研究[D];哈尔滨工业大学;2009年



本文编号:2075054

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2075054.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户617dc***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com