当前位置:主页 > 科技论文 > 电力论文 >

含风电区域电网的可靠性评估模型与方法

发布时间:2018-07-20 18:22
【摘要】:风电的大规模接入势必对电网的安全性和可靠性造成影响,特别是对网架结构薄弱的区域电网影响较大,需要从理论上量化分析风电的可靠性及对电网的影响。根据某区域电网的特点,特别是受外界环境影响较大而且含大量风电的地区,分析天气、环境、自然灾害和运行工况等对风电机组、发电机、变压器和输电线路停运的影响,提出考虑天气、环境和电网运行工况的元件故障率计算方法,研究风电机组和主要电力系统一次设备的时变停运模型。针对风电机组的运行特点,基于马尔可夫链的解析方法,考虑运行、停运和降额状态,建立了风电机组的三状态故障模型,在此基础上,考虑风速的随机性、风电场尾流效应的影响建立了风电场的可靠性模型;基于此模型,应用蒙特卡罗方法对风电场有功出力的概率特性进行评估,给出了评估的方法和流程。考虑非序贯蒙特卡罗方法的不足,在风电机组三状态故障模型的基础上,基于状态持续时间抽样方法给出了风机状态的时间序列模型;基于风速的ARMA模型,考虑风电场复杂尾流效应的影响建立了用于序贯蒙特卡罗仿真的风电场可靠性模型;针对风电机组的三状态模型,提出双重抽样序贯蒙特卡罗方法,并基于此方法对风电场有功出力的可靠性进行评估。根据上述研究成果,应用分散抽样蒙特卡罗方法对某区域发电系统进行可靠性评估。首先考虑风电出力的随机性、常规发电机组的随机停运和负荷预测的随机性建立发电系统的可靠性评估模型;其次针对概率抽样中常规蒙特卡罗算法样本容量大、效率低等不足,提出应用分散抽样蒙特卡罗算法解决含风电发电系统可靠性评估问题,此算法将[0,1]区间分成若干子区间,在抽样后分别对每个子区间进行系统状态判断和指标计算,从而增加故障状态的抽样频率,提高抽样效率,在满足精度要求下,有效的减少了抽样次数。鉴于发电系统未涉及变压器、输电线路等电网元件,应用蒙特卡罗方法对含风电的发输电系统进行可靠性评估。首先考虑风速的随机性、多个风电场中风速的相关性和风机的停运及降额状态建立风电场的可靠性模型;其次考虑常规蒙特卡罗方法应用于大规模风电接入,特别是以单个小容量的机组接入的情况下会存在样本容量大、效率低等不足,本文提出在蒙特卡罗仿真的概率抽样环节中使用拉丁超立方采样和Cholesky分解相结合的方法,此方法使用拉丁超立方采样来改善样本值对输入随机变量的分布空间的覆盖程度、使用Cholesky分解来降低输入变量之间的相关性系数,从而提高了采样效率、增加收敛速度和提高评估精度。在MATLAB中建立了相关评估程序,并对150MW风电场算例、含2个风电场的10机发电系统算例和改进IEEE-RTS79发输电系统算例进行了仿真,通过对仿真结果的分析和研究验证所建模型和所提方法的有效性。
[Abstract]:Large-scale wind power access is bound to have an impact on the security and reliability of the power grid, especially on the regional grid with weak grid structure. Therefore, it is necessary to quantitatively analyze the reliability of wind power and its impact on the power grid theoretically. According to the characteristics of a certain regional power network, especially in areas which are greatly affected by the external environment and contain a large amount of wind power, the effects of weather, environment, natural disasters and operating conditions on the outage of wind turbines, generators, transformers and transmission lines are analyzed. This paper presents a method for calculating the failure rate of components considering weather, environment and power network operating conditions, and studies the time-varying outage model of wind turbine and primary equipment of main power system. According to the operating characteristics of wind turbine, based on the analytic method of Markov chain, the three-state fault model of wind turbine is established by considering the running, outage and reducing state. On this basis, the randomness of wind speed is considered. The reliability model of wind farm is established by the influence of wind farm wake effect. Based on this model, the probabilistic characteristics of active power output of wind farm are evaluated by Monte Carlo method, and the evaluation method and process are given. Considering the shortcomings of non-sequential Monte Carlo method, based on the three-state fault model of wind turbine, the time series model of wind turbine state and the ARMA model based on wind speed are given based on state duration sampling method. Considering the influence of complex wake effect of wind farm, the reliability model of wind farm for sequential Monte Carlo simulation is established, and a two-sampling sequential Monte Carlo method is proposed for the three-state model of wind turbine. Based on this method, the reliability of active power output of wind farm is evaluated. Based on the above research results, a decentralized sampling Monte Carlo method is used to evaluate the reliability of a regional power generation system. Firstly, considering the randomness of wind power output, the random outage of conventional generator sets and the randomness of load forecasting, the reliability evaluation model of generation system is established, and the sample capacity of conventional Monte Carlo algorithm in probability sampling is large. In this paper, a decentralized sampling Monte Carlo algorithm is proposed to solve the reliability evaluation problem of wind power generation system. The algorithm divides the interval of [0 ~ 1] into several sub-regions. After sampling, the system state judgment and index calculation are carried out for each sub-interval, thus increasing the sampling frequency of the fault state, improving the sampling efficiency, and effectively reducing the sampling times under the requirement of precision. In view of the fact that the generation system does not involve transformer, transmission line and other power network elements, Monte Carlo method is used to evaluate the reliability of wind power generation and transmission system. Firstly, considering the randomness of wind speed, the correlation of wind speed in many wind farms, the outage and reduction of wind turbines, the reliability model of wind farms is established, and the conventional Monte Carlo method is applied to large-scale wind power access. In particular, when a single unit with small capacity is connected, the sample size is large and the efficiency is low. In this paper, a method combining Latin hypercube sampling and Cholesky decomposition in probability sampling in Monte Carlo simulation is proposed. In this method, Latin hypercube sampling is used to improve the coverage of sample values to the distribution space of input random variables, Cholesky decomposition is used to reduce the correlation coefficient between input variables, and the sampling efficiency is improved. Increase convergence speed and improve evaluation accuracy. The relative evaluation program is established in MATLAB, and the examples of 150 MW wind farm, 10 generator power generation system with 2 wind farms and the improved IEEE-RTS79 generation and transmission system are simulated. The effectiveness of the proposed model and the proposed method is verified by the analysis and research of the simulation results.
【学位授予单位】:华北电力大学(北京)
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TM614;TM732

【相似文献】

相关期刊论文 前10条

1 漆景星;侯艳红;;桥梁可靠性评估综述[J];浙江交通职业技术学院学报;2011年01期

2 张家常;指控设备与系统的可靠性评估[J];舰船科学技术;1995年05期

3 李美珍;;配电网可靠性评估的网络等值法模型实验研究[J];价值工程;2013年31期

4 刘洋,周家启;大电网可靠性评估最优负荷削减模型[J];重庆大学学报(自然科学版);2003年10期

5 钟杰峰,陈旭,吴宝英,黄金凤,万官泉;广东500kV主网可靠性评估[J];华东电力;2004年03期

6 周正伐;对“威布尔型产品可靠性评估方法应用中的几个问题”一文的几点看法[J];质量与可靠性;2004年02期

7 柳亦钢;易仕敏;杨华;;发电厂可靠性评估的解析方法[J];云南电力技术;2005年05期

8 周源泉,王健,常煜辉;某型冲压发动机的可靠性评估(续)[J];质量与可靠性;2005年01期

9 李国庆;于海承;李奇;邱爱华;;地方供电网可靠性评估[J];东北电力大学学报;2006年02期

10 张士峰;杨华波;张金槐;;小样本成败型设备可靠性评估方法[J];核动力工程;2006年05期

相关会议论文 前10条

1 朱三可;李祥臣;齐俊臣;彭道勇;;可靠性评估中指数型数据向成败型数据的折合[A];2009第十三届全国可靠性物理学术讨论会论文集[C];2009年

2 王正良;;同步可靠性评估方法[A];中国工程物理研究院科技年报(2003)[C];2003年

3 夏秀华;;结构可靠性评估方法[A];第四届全国现代结构工程学术研讨会论文集[C];2004年

4 姚新民;孙伟;刘忠卿;陈以方;;新装备初期部署阶段的可靠性评估[A];2012年全国机械行业可靠性技术学术交流会暨第四届可靠性工程分会第四次全体委员大会论文集[C];2012年

5 王德民;雪喜兵;孙秦;羊妗;;复合材料梁架结构的可靠性评估[A];复合材料的现状与发展——第十一届全国复合材料学术会议论文集[C];2000年

6 贾晓红;;典型配电系统的可靠性评估和分析[A];山东电机工程学会第四届供电专业学术交流会论文集[C];2007年

7 秦纪平;刘前进;;基于成功概率的配网可靠性评估[A];中国高等学校电力系统及其自动化专业第二十四届学术年会论文集(上册)[C];2008年

8 吴开贵;周家启;;线性优化神经网络在电网可靠性评估中的应用研究[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

9 尹锁柱;敖发良;;猫跳河流域水情自动测报系统可靠性评估[A];中国电子学会可靠性分会第十三届学术年会论文选[C];2006年

10 王玉明;;最大熵可靠性评估方法的改进[A];中国工程物理研究院科技年报(2003)[C];2003年

相关重要报纸文章 前1条

1 石松;基于分离特征样本的核岛主泵可靠性评估和寿命预测技术研究[N];科技日报;2007年

相关博士学位论文 前10条

1 张可新;动车组可靠性评估及维修策略优化方法研究[D];中国铁道科学研究院;2015年

2 王昕伟;含风电区域电网的可靠性评估模型与方法[D];华北电力大学(北京);2014年

3 方艮海;产品可靠性评估中的多源信息融合技术研究[D];合肥工业大学;2006年

4 程皖民;基于小子样复杂信息集的可靠性评估方法及其应用研究[D];国防科学技术大学;2006年

5 任淑红;民航发动机性能可靠性评估与在翼寿命预测方法研究[D];南京航空航天大学;2010年

6 何禹清;配电网快速可靠性评估及重构方法研究[D];湖南大学;2011年

7 宋晓通;基于蒙特卡罗方法的电力系统可靠性评估[D];山东大学;2008年

8 钟波;基于软计算理论的电力系统可靠性评估模型与算法研究[D];重庆大学;2004年

9 汪隆君;电网可靠性评估方法及可靠性基础理论研究[D];华南理工大学;2010年

10 刘洋;大规模电力系统并行处理技术及可靠性评估Web计算系统研究[D];重庆大学;2006年

相关硕士学位论文 前10条

1 郭卫东;砖混结构中梁的动力特性试验及可靠性评估[D];河北大学;2015年

2 王旗;基于相似机床信息的CXK5463的可靠性评估[D];燕山大学;2015年

3 谢潜;主动配电网可靠性评估[D];上海交通大学;2015年

4 孙闻浩;基于改进的重要抽样算法的输电系统可靠性评估[D];华北电力大学;2015年

5 相英杰;城市配电网可靠性评估及其经济性研究[D];华北电力大学;2015年

6 胡吉祥;供电企业配电网可靠性评估系统的设计与实现[D];电子科技大学;2015年

7 陈骥群;考虑配电网网络重构的可靠性评估[D];华北电力大学;2015年

8 孙帅;电气主接线可靠性评估及应用研究[D];华北电力大学;2015年

9 李芷筠;电力系统继电保护可靠性评估与管理系统研究[D];华北电力大学;2015年

10 陈松;智能配电网供电可靠性评估[D];华北电力大学;2015年



本文编号:2134367

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2134367.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户46366***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com