当前位置:主页 > 科技论文 > 电力论文 >

大型风力发电机组塔筒载荷特性分析

发布时间:2018-08-22 15:30
【摘要】:风力发电机组是靠风轮转动吸取风能的,将气流动能转为机械能,再转化为电能输送到电网。塔筒是风电机组中的主要支撑部件,是具有薄壳型筒状的高耸结构,它长期处于自然大气环境中,受大气湍流、风剪切、风向变化和塔影效应制约,这使塔筒受到非常复杂的气动载荷的作用,对风力发电机组的气动性能和使用寿命产生很大的影响。为了确保风力发电机组安全、可靠、有效地运行,避免事故的发生,在风力发电机组设计过程中,需要对风力发电机组塔筒所受载荷进行分析,从而对塔筒结构进行安全优化和性能改进,特别是对于大、中型风力发电机组,其意义重大。本文以某型号2MW风电机组为例,利用GH-Bladed软件构建风电机组稳态和动态下的力学模型,并进行仿真计算。基于空气动力学和结构动力学知识,借助IEC和GL标准文件,对塔筒的载荷进行详细分析和验证。论文的主要工作如下:(1)建立风电机组坐标系统,深入研究机组各种载荷的传递方式与简化方法。根据结构载荷特性,最终总结塔筒所受六种载荷:塔顶气动载荷、轮毂扭矩、塔身风载荷、机头偏心引起的弯矩,机头重力载荷,塔架重力载荷。将这些载荷沿三坐标轴方向进行简化,计算其当量集中力(力矩)大小。(2)风电机组的稳态性能分析中,主要研究影响发电功率的影响因子。在变桨式风电机组中,影响发电功率的主要因素是叶尖速比和桨距角。通过控制系统调节桨距角的大小来改变叶尖速比,寻求其最佳值,使发电功率值趋优。(3)对塔筒的四个主要截面的极限载荷进行分析,确定四个截面处弯矩的变化规律。随着风况的不同,机舱各部件受力状态发生变化,塔筒各截面弯矩的大小和最大弯矩截面也会发生变化。另外,特别关注振动问题在运行和停机状态下始终都是影响机组安全的主要因素。(4)利用GH-Bladed软件分析塔筒的疲劳载荷,获得应力水平与累积循环次数关系曲线。通过疲劳试验确定:塔筒在给定应力水平反复作用下,损伤可以认为与应力循环成线性累积的关系,当损伤累积到某一临界值时产生破坏。
[Abstract]:The wind turbine absorbs wind energy by rotating the wind turbine, converts the kinetic energy of the air flow into mechanical energy, and then converts the energy into electric energy to the power grid. Tower and tube is the main supporting part of wind turbine, and it is a tall structure with thin shell shape. It is in the natural atmosphere for a long time. It is restricted by atmospheric turbulence, wind shear, wind direction change and tower shadow effect. This makes the tower and cylinder subjected to very complex aerodynamic load, which has a great impact on the aerodynamic performance and service life of the wind turbine. In order to ensure the safe, reliable and effective operation of the wind turbine and avoid the accident, it is necessary to analyze the load on the tower and tube of the wind turbine during the design of the wind turbine. Therefore, it is of great significance to optimize the safety and improve the performance of tower and tube structure, especially for large and medium sized wind turbines. Taking a certain type of 2MW wind turbine as an example, the mechanical model of wind turbine under steady and dynamic conditions is constructed by using GH-Bladed software, and the simulation calculation is carried out. Based on the knowledge of aerodynamics and structural dynamics, the load of tower and cylinder is analyzed and verified in detail with the help of IEC and GL standard files. The main work of this paper is as follows: (1) the coordinate system of wind turbine is established, and the transmission mode and simplified method of load are studied deeply. According to the structural load characteristics, six kinds of loads are summarized: top aerodynamic load, hub torque, tower wind load, bending moment caused by nose eccentricity, nose gravity load and tower gravity load. These loads are simplified along the three axes and the equivalent concentrated force (torque) is calculated. (2) in the steady-state performance analysis of wind turbine, the influence factors of generating power are mainly studied. In the variable propeller wind turbine, the main factors affecting power generation are tip speed ratio and pitch angle. By adjusting the pitch angle of the propeller, the blade tip velocity ratio is changed and the optimal value of power generation is obtained. (3) the limit load of the four main sections of the tower tube is analyzed, and the variation law of the bending moment at the four sections is determined. With the different wind conditions, the mechanical state of the components of the engine room changes, and the bending moment of each section of the tower tube and the maximum moment section will also change. In addition, special attention is paid to the vibration problem, which is always the main factor affecting the safety of the unit in operation and shutdown. (4) the fatigue load of the tower and cylinder is analyzed by GH-Bladed software, and the curve of the relationship between the stress level and the cumulative cycle number is obtained. It is determined by fatigue test that the damage of tower and cylinder can be regarded as a linear cumulative relationship with stress cycle under repeated action of given stress level, and damage occurs when the damage accumulates to a certain critical value.
【学位授予单位】:沈阳工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TM315

【参考文献】

相关期刊论文 前10条

1 徐芳;周志刚;;变速变桨距风力发电机气动特性研究[J];可再生能源;2013年08期

2 赵文涛;曹平周;陈建锋;;风力发电钢塔筒的荷载计算方法和荷载组合研究[J];特种结构;2010年04期

3 王孚懋;郭晓斌;衣秋杰;郭兰兰;李勇;;我国大型风电技术现状与展望[J];现代制造技术与装备;2010年02期

4 申宽育;;中国的风能资源与风力发电[J];西北水电;2010年01期

5 张青雷;卞光祥;郭井宽;;风力发电机组空气动力学建模与应用[J];上海电机学院学报;2009年04期

6 魏伟;许胜辉;;风力发电及相关技术综述[J];微电机;2009年04期

7 魏玉通;田德;王海宽;王丽丽;许明;董正茂;;风力发电机叶片动态载荷分析[J];农村牧区机械化;2009年01期

8 魏伟;;风力发电及相关技术发展现状和趋势[J];电气技术;2008年12期

9 宁李谱;麦云飞;刘林;;水平轴风力发电机主要载荷的确定方法[J];机械制造;2008年10期

10 顾岳飞;;兆瓦级风力发电机组塔架结构的优化设计[J];上海电力;2007年05期



本文编号:2197527

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2197527.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7fd3d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com