当前位置:主页 > 科技论文 > 电力论文 >

远距离小功率无线电能传输技术研究

发布时间:2018-08-27 08:57
【摘要】:近年来随着科技发展和人们生活水平提高,手机、穿戴式设备、人体植入式设备以及无线传感器网络等得到广泛应用并且呈现逐年增长趋势。这些设备主要特点有功率等级较低、耗能较高以及尺寸较小等,能量补充问题始终是制约这些设备进一步发展的瓶颈。传统充电方式大都采用有线方式,虽然效率较高,但是存在充电器接口不统一、潜在安全隐患以及携带不方便等固有缺点。这就要求提出一种新型充电方式来解决上述问题,磁耦合共振式无线电能传输技术随之而生,与其它无线电能传输技术相比,具有传输距离远、功率等级大以及效率较高等优势,最具有应用前景。 本文以磁耦合共振式技术为基础,研究远距离内、大发射端对小接收端形式的不对称线圈结构以及不同负载接入方式时小功率无线电能传输系统,旨在为不同种类的小功率设备提供更加便捷的充电方式,以便解决设备的能量补充问题,从而推动这些设备进一步广泛应用。 本文首先对系统基本原理进行研究,通过电路理论分析二线圈模型,得到影响系统传输功率和效率的主要因素,得知这种结构不适合于远距离传输场合。为克服这种缺陷,,优化设计三线圈结构,通过使用发射端增强线圈实现电流以及空间磁场强度和分布范围的放大。同时,对接收端不同负载接入方式进行分析,提出不同负载阻值情况时需要选择相应的负载接入方式,以便提高传输距离、功率和效率。 采用上述三线圈结构完成系统实验平台搭建,主要研究三线圈结构的合理性、接收端不同负载接入方式及负载变化特性、传输方向特性、多接收端情况以及空间磁场分布和软开关状态对系统性能影响。实验证明:论文设计的发射端能够保证系统高效工作;不同负载阻值需要选择合适的负载接入方式以及多接收端能够有效提高传输功率和效率,与实际应用要求相一致。 系统能够实现如下指标:水平传输方向40cm内为2W的白色LED灯泡、1.5W的红色LED小灯以及1.5W的手机无线供电,系统传输效率为20%;垂直传输方向50cm内为3W的白色LED灯泡、2W的红色LED小灯以及1.5W的手机无线供电,系统传输效率为26%。
[Abstract]:In recent years, with the development of science and technology and the improvement of people's living standard, mobile phones, wearable devices, human implantable devices and wireless sensor networks have been widely used and have been increasing year by year. The main characteristics of these equipments are low power level, high energy consumption and small size, etc. The problem of energy supplement is always the bottleneck to the further development of these equipments. Most of the traditional charging methods are wired, although the efficiency is high, but the charger interface is not uniform, the potential security risks and the inherent shortcomings such as carrying inconvenient. This requires that a new charging method be proposed to solve the above problems. The magnetically coupled resonance radio energy transmission technology comes along with it, and it has a long transmission distance compared with other radio energy transmission technologies. High power level and high efficiency advantages, the most promising application. Based on the magnetically coupled resonance technique, this paper studies the asymmetric coil structure in the form of large transmitter to small receiver and the low power radio energy transmission system with different load access modes in a long distance. The aim of this paper is to provide a more convenient charging method for different kinds of low-power equipment, so as to solve the problem of energy replenishment of the equipment and promote the further application of these devices. In this paper, the basic principle of the system is studied, and the two-coil model is analyzed based on the circuit theory. The main factors affecting the transmission power and efficiency of the system are obtained, and it is found that this structure is not suitable for long-distance transmission. In order to overcome this defect, the three-coil structure is optimized, and the current, the intensity and the distribution range of the space magnetic field are amplified by using the enhanced coil at the emitter. At the same time, the different load access modes of the receiver are analyzed, and it is proposed that the load access mode should be selected when the load resistance is different, in order to improve the transmission distance, power and efficiency. The three-coil structure is used to build the system experimental platform. The rationality of the three-coil structure, the different load access mode, the load variation characteristics and the transmission direction characteristics of the receiving end are studied. The effects of multi-receiver, spatial magnetic field distribution and soft switching state on the performance of the system are discussed. The experiments show that the transmitter designed in this paper can ensure the efficient operation of the system, and the different load resistance needs to select the appropriate load access mode and multi-receiver can effectively improve the transmission power and efficiency, which is consistent with the practical application requirements. The system can realize the following targets: the white LED light bulb of 2 W in the horizontal direction 40cm and the red LED light lamp of 1.5 W and the wireless power supply of the mobile phone of 1.5 W, the transmission efficiency of the system is 20 parts; In the vertical direction of 50cm, the white LED light bulb of 3W and the red LED lamp of 2W and the wireless power supply of 1.5W mobile phone, the transmission efficiency of the system is 26W.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM724

【参考文献】

相关期刊论文 前7条

1 黄辉;黄学良;谭林林;丁晓辰;;基于磁场谐振耦合的无线电力传输发射及接收装置的研究[J];电工电能新技术;2011年01期

2 于春来;朱春波;毛银花;陈清泉;;谐振式无线能量传输系统驱动源[J];电工技术学报;2011年S1期

3 李阳;杨庆新;陈海燕;闫卓;张献;薛明;;无线电能传输系统中影响传输功率和效率的因素分析[J];电工电能新技术;2012年03期

4 李阳;杨庆新;闫卓;张超;陈海燕;张献;;无线电能有效传输距离及其影响因素分析[J];电工技术学报;2013年01期

5 黄学良;吉青晶;谭林林;王维;赵家明;周亚龙;;磁耦合谐振式无线电能传输系统串并式模型研究[J];电工技术学报;2013年03期

6 赵争鸣;张艺明;陈凯楠;;磁耦合谐振式无线电能传输技术新进展[J];中国电机工程学报;2013年03期

7 罗斌;生茂棠;吴仕闯;张鸣;;磁谐振耦合式单中继线圈无线功率接力传输系统的建模与分析[J];中国电机工程学报;2013年21期

相关博士学位论文 前1条

1 游飞;E类功率放大器研究[D];电子科技大学;2009年



本文编号:2206749

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2206749.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0d702***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com