有机光伏器件—高效聚合物太阳电池和近红外光电探测器
[Abstract]:Organic photovoltaic devices have attracted much attention due to their advantages such as light weight, low cost and solution processing. However, polymer solar cells and polymer near-infrared photodetectors, which can be used for solution processing, are more efficient in energy conversion and device stability than traditional inorganic photovoltaic devices. In view of this, the main work of this paper is to optimize the preparation process of photovoltaic devices, improve the performance of polymer solar cells and near-infrared photodetectors, and explore new ways to fabricate high-performance polymer photovoltaic devices by solution processing technology. Way.
We first investigated the properties of the donor-acceptor (D-A) conjugated polymer (PBDT-DTNT) based on the electron-absorbing group of naphthalene [1,2-c:5,6-c] bis [1,2,5] thiadiazole (NBDT). The polymer PBDT-DTNT exhibited excellent performance as a donor material for solar cells due to its strong electron-absorbing ability. Different photoelectric properties. We mainly optimize the performance of solar cells based on the polymer film from the nano-size morphology. We found that the thermal annealing treatment, solvent additives and other treatment methods can improve the performance of solar cells based on the polymer and obtain higher energy conversion efficiency. Ming PBDT-DTNT is a promising electron donor material, and our results have important reference value for optimizing a series of conjugated polymers based on the electron-absorbing groups of naphthalene dithiadiazole as donor materials for solar cell devices.
On the basis of the above research, we still use PBDT-DTNT:PC71BM material system as active layer material and cross-linked conjugated polymer PFN-OX as electron extraction layer to prepare flip-chip polymer solar cells. The relationship between the thickness of active layer film and the performance of polymer solar cells is studied systematically. A series of devices with different active layer thicknesses were fabricated, and the thickness ranged from 85 nm to 1300 nm. When the active layer thickness was 280 nm, the highest energy conversion efficiency was 8.62%. When the thickness was about 1000 nm, the energy conversion efficiency was still 7.24%. We found that with the increase of the active layer thickness, the carrier mobility was still maintained. The results of grazing incidence small angle X-ray scattering (GISAXS) and grazing incidence wide angle X-ray scattering (GIWAXS) show that the increase of thickness does not change the high order of polymer chains in the blends, which means that the increase of film thickness does not affect the polymerization of holes in the blends. The transport of the main chains along the polymer skeleton is the reason why polymer solar cells based on this material system can maintain high efficiency even with such a thick film.
In the third part, based on a novel narrow band-gap conjugated polymer PTZBTTT-BDT, we fabricated polymer near-infrared photodetectors with high performance. Considering that water-soluble conjugated polymer PFN can improve the performance of polymer solar cells, especially reduce the dark current of the devices, we applied PFN to the polymerization. In the range of 400 nm to 950 nm, the detection rate is as high as 1013 cm.Hz 1/2/W. In the range of 950 nm to 1100 nm, the detection rate is higher than 1010 cm.Hz 1/2/W. We found that the negative PFN is added. Photodetectors with PFN coatings exhibit better diode characteristics. Under reverse bias, the dark current of the device is well suppressed, thus reducing the noise caused by dark current. Therefore, photodetectors with PFN coatings exhibit superior performance compared with inorganic silicon detectors.
Based on the above research work, we still use the above near infrared material PTZBTTT-BDT as the donor material of the active layer, and use the crosslinked conjugated polymer PFN-OX as the electron extraction layer to prepare flip-chip polymer near infrared photodetectors. At the same time, we use the traditional cathode modified material ZnO as the electron extraction layer to prepare the detector. It is found that the photodetector based on PFN-OX electron extraction layer has a response rate of 116 mA/W to near infrared light of 800 nm wavelength at room temperature and zero bias voltage, and the corresponding detection rate is 1.02 *1013 cm Hz 1/2/W. The flip-chip detector based on traditional electron extraction layer ZnO has a detection rate of 1.71 *1012 cm Hz 1/2/W, which is a ratio. The detectivity of the photodetectors based on the PFN-OX electron extraction layer is almost one order of magnitude smaller, which proves that the PFN-OX film has better cathodic modification effect than the ZnO film. At the same time, our experimental results show that the flip-chip photodetectors based on the PFN-OX modified ITO cathode are good flip-chip polymers. A very effective way of photodetectors.
【学位授予单位】:华南理工大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TM914.4;TN215
【相似文献】
相关期刊论文 前10条
1 郑刚,蔡小舒,虞先煌;确定激光粒度仪光电探测器的响应系数的方法[J];仪器仪表学报;1996年03期
2 嵇成新;当前雷达及光电探测器亟待解决的问题[J];舰船科学技术;2003年05期
3 高勋;董光炎;李永大;;光电探测器的激光损伤阈值的测量及测量误差分析[J];长春理工大学学报;2006年02期
4 邓敏;彭芸;;浅谈生产环境对某型光电探测器外观质量的影响[J];硅谷;2008年02期
5 李翰山;华翔;王泽民;雷志勇;雷鸣;;阵列光电探测器在光电探测靶中的应用研究[J];弹箭与制导学报;2008年03期
6 郭渭荣;栗苹;陈慧敏;贾瑞丽;;不同角度下散射太阳光对光电探测器的干扰[J];探测与控制学报;2009年01期
7 费丰;;高速光电探测器频率响应测试方法研究[J];宇航计测技术;2010年01期
8 尹洪剑;;功率驱动型集成光电探测器结构研究[J];硅谷;2011年17期
9 李林忠,王正民;用真空光电探测器测量软X射线起伏波形[J];核聚变与等离子体物理;1986年01期
10 Leo Levi;祁正敏;;应用光学——光学系统设计指南 第十六章 光电探测器和热探测器(续)[J];应用光学;1987年03期
相关会议论文 前10条
1 单崇新;王立昆;张吉英;申德振;范希武;;氧锌镁基太阳盲光电探测器[A];第十一届全国MOCVD学术会议论文集[C];2010年
2 王晓耘;徐华盛;雷爱宏;;超快光电探测器[A];华东三省一市第三届真空学术交流会论文集[C];2000年
3 陈风;王骥;郑小兵;;陷阱式光电探测器的线性测量[A];第十届全国光学测试学术讨论会论文(摘要集)[C];2004年
4 费丰;杨家桂;缪向红;;高速光电探测器带宽测试技术[A];第十二届全国光学测试学术讨论会论文(摘要集)[C];2008年
5 王晓耘;刘德林;;超快响应光电探测器时间响应特性的研究[A];第六届华东三省一市真空学术交流会论文集[C];2009年
6 郭中原;;用于激光陀螺仪的硅光电探测器[A];第九届全国光电技术学术交流会论文集(上册)[C];2010年
7 林聚承;袁祥辉;;一种新型650nm的光电探测器[A];中国仪器仪表学会第六届青年学术会议论文集[C];2004年
8 费丰;王宁;刘涛;;高速光电探测器带宽测试技术研究[A];第十三届全国光学测试学术讨论会论文(摘要集)[C];2010年
9 杨电;赵先明;徐红春;;雪崩型光电探测器的自动老化测试的研究[A];第十四届全国光学测试学术讨论会论文(摘要集)[C];2012年
10 王兴妍;黄辉;王琦;黄永清;任晓敏;;新型光电探测器的研究[A];第九届全国青年通信学术会议论文集[C];2004年
相关重要报纸文章 前4条
1 记者 苏亚兵;建国内首个光电探测器研发平台[N];珠海特区报;2010年
2 撰稿 本报记者 张希;宁企研发光电探测器 保障嫦娥三号平安“落月”[N];南京日报;2013年
3 张巍巍;IBM在芯片通信技术上取得重大突破[N];科技日报;2010年
4 张巍巍;IBM芯片通信技术取得重大突破[N];中国质量报;2010年
相关博士学位论文 前10条
1 李莉;双波段组合激光辐照光电探测器的研究[D];国防科学技术大学;2010年
2 李建威;高速光电探测器频率响应特性测试研究[D];南开大学;2010年
3 黄启俊;MOSFET亚阈光电特性研究及其应用系统[D];武汉大学;2010年
4 李霞;PTCDA/p-Si光电探测器的研制与性能研究[D];兰州大学;2009年
5 伞海生;透明导电薄膜CdIn_2O_4的研究和高速光电探测器频响的测量[D];兰州大学;2006年
6 魏莹;Ge/Si异质结及其光电探测器特性研究[D];兰州大学;2012年
7 朱会丽;分离吸收层与倍增层结构的低压4H-SiC雪崩光电探测器及其p型欧姆接触的研究[D];厦门大学;2007年
8 宋海兰;低温晶片键合技术及其在硅基长波长雪崩光电探测器中的应用研究[D];北京邮电大学;2011年
9 胡小文;有机光伏器件—高效聚合物太阳电池和近红外光电探测器[D];华南理工大学;2014年
10 晁军峰;半导体Sn、Sb基硫属化合物的制备及其性能研究[D];华中科技大学;2013年
相关硕士学位论文 前10条
1 高勋;强激光对光电探测器的损伤研究[D];长春理工大学;2004年
2 周勇;谐振腔增强型光电探测器的特性研究[D];电子科技大学;2009年
3 贺成群;光电探测器关键性能参数测试研究[D];大连理工大学;2009年
4 陶启林;波长1.3μm高速光电探测器研究[D];电子科技大学;2000年
5 孙丹丹;基于光电探测器的微波光子变频技术研究[D];大连理工大学;2012年
6 焦芳;小型超宽谱超快光电探测器设计与实现[D];电子科技大学;2013年
7 王大鹏;低噪声不隔直光电探测器的研制[D];北京交通大学;2014年
8 范忱;光互连系统光电探测器的设计[D];西安电子科技大学;2013年
9 曲洪丰;光电探测器特性一体化实验系统研究[D];浙江大学;2006年
10 钟行;通信用高速光电探测器芯片的研究[D];武汉邮电科学研究院;2012年
本文编号:2216514
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2216514.html