当前位置:主页 > 科技论文 > 电力论文 >

氢光储联合发电系统协调控制研究

发布时间:2018-09-01 20:01
【摘要】:随着传统能源储量的日趋枯竭以及环境污染的日益严重,各国越来越重视可再生能源的开发与利用。在常用的可再生能源中,太阳能和氢能因其储量的丰富得到广泛的研究和应用。但在实际应用中,独立的光伏电池和燃料电池发电系统都存在各自的缺点:光伏电池输出特性易受环境因素影响导致其输出不稳定;燃料电池输出稳定,但对负载的变化响应慢。这些缺点给人们利用氢能和太阳能带来了困难。但从输出特性来讲,燃料电池和光伏电池具有很好的互补性,可通过建立联合发电系统的方式来弥补独立光伏电池和燃料电池发电系统的不足。但联合发电系统不是对独立发电系统简单的叠加,需要多种能源的协调配合,才能提高系统的安全性、稳定性和经济性。因此本文针对氢光储联合发电系统的协调控制进行了研究。首先对联合发电系统中涉及的燃料电池、光伏电池、蓄电池和功率转换器进行了研究。对燃料电池、光伏电池和蓄电池的工作原理和数学模型进行了描述,并对其输出特性进行了分析研究。结合各种能源的输出特性,本文选取了一种交错并联Boost级联全桥LLC的组合型DC/DC拓扑,并对其数学模型进行了研究。最后研究了单相离网型逆变器的拓扑和数学模型。其次对联合发电系统采取分块处理,分别针对燃料电池发电子系统和光伏电池发电子系统的架构和控制进行了详细设计,主要针对系统对负载波动的平抑进行了设计。同时为了提高能源的利用率,应用变步长的扰动观察法控制光伏电池和燃料电池工作在最大功率点,最后对DC/AC控制器进行了设计。然后整合燃料电池发电子系统和光伏电池发电子系统,设计氢光储联合发电系统的架构,并针对此联合发电系统设计了一种基于分层控制的协调控制策略:底层控制器负责快速响应负载的变化及完成发电设备最大功率点的跟踪,上层控制器负责控制系统运行状态跳转以及按照设计的调度策略完成对光伏电池和燃料电池输出功率的调度。最后以长寿命交流燃料电池备用电源电堆及系统项目为支撑,对本文设计的协调控制策略进行了仿真及实验验证。仿真及实验结果表明:应用本文设计的协调控制策略,联合发电系统在各种工况下的输出特性均满足国家标准及项目要求,并且对于具体的调度目标均有明显的优化效果。
[Abstract]:With the depletion of traditional energy reserves and the increasingly serious environmental pollution, more and more countries attach importance to the development and utilization of renewable energy. Among the commonly used renewable energy sources, solar and hydrogen energy have been widely studied and applied due to their rich reserves. However, in practical applications, the independent photovoltaic cells and fuel cell power generation systems have their own shortcomings: the output characteristics of photovoltaic cells are easily affected by environmental factors, and the output of fuel cells is stable. But the response to load changes is slow. These disadvantages make it difficult for people to use hydrogen energy and solar energy. However, in terms of output characteristics, fuel cells and photovoltaic cells are complementary and can be used to make up for the shortcomings of independent photovoltaic cells and fuel cell power generation systems by establishing a combined generation system. But the combined generation system is not a simple superposition to the independent power generation system, it needs the coordination of various energy sources to improve the security, stability and economy of the system. Therefore, the coordinated control of hydrogen storage combined generation system is studied in this paper. Firstly, the fuel cells, photovoltaic cells, batteries and power converters involved in the combined generation system are studied. The working principle and mathematical model of fuel cell, photovoltaic cell and battery are described, and their output characteristics are analyzed and studied. Combined with the output characteristics of various energy sources, a combined DC/DC topology of staggered parallel Boost cascaded full-bridge LLC is selected and its mathematical model is studied. Finally, the topology and mathematical model of single-phase off-grid inverter are studied. Secondly, the combined generation system is divided into blocks, and the structure and control of the fuel cell electronic system and the photovoltaic system are designed in detail, and the load fluctuation of the system is mainly designed. At the same time, in order to improve the energy efficiency, the variable step perturbation observation method is used to control the photovoltaic cell and fuel cell working at the maximum power point. Finally, the DC/AC controller is designed. Then integrate the fuel cell generation electronic system with the photovoltaic cell electronic system, and design the framework of the hydrogen optical storage combined generation system. A coordinated control strategy based on hierarchical control is designed for the combined power generation system. The underlying controller is responsible for fast response to load changes and the tracking of the maximum power point of power generation equipment. The upper controller is responsible for controlling the system running state jump and scheduling the output power of photovoltaic cell and fuel cell according to the designed scheduling strategy. Finally, the coordinated control strategy designed in this paper is simulated and verified by experiments based on the long life AC fuel cell standby power stack and system project. The simulation and experimental results show that the output characteristics of the combined generation system meet the requirements of the national standard and the project under various operating conditions by using the coordinated control strategy designed in this paper.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM61

【参考文献】

相关期刊论文 前6条

1 方宇;徐德鸿;张艳军;;高功率密度LLC谐振变换器的研究[J];电力电子技术;2007年08期

2 朱选才;沈国桥;徐德鸿;;5kW燃料电池分布式并网发电系统设计[J];电力电子技术;2009年10期

3 赵斌;胡益锖;杨森;杨久贺;姒柏昌;张东辉;顾国扬;;太阳能综述[J];化工装备技术;2012年01期

4 胡忠文;张明锋;郑继华;;太阳能发电研究综述[J];能源研究与管理;2011年01期

5 张文静;;燃料电池汽车或将卷土重来[J];科学新闻;2013年07期

6 茆美琴 ,余世杰 ,苏建徽;带有MPPT功能的光伏阵列Matlab通用仿真模型[J];系统仿真学报;2005年05期

相关硕士学位论文 前1条

1 吴屏;燃料电池发电系统前端DC/DC变换器设计[D];浙江大学;2007年



本文编号:2218196

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2218196.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7f028***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com