当前位置:主页 > 科技论文 > 电力论文 >

双极性铅锂电池制备工艺及性能研究

发布时间:2018-09-17 19:37
【摘要】:长久以来铅酸蓄电池在化学电源领域具有不可取代的地位,但是传统的铅酸电池作为动力电池使用时有比能量低、寿命短等劣势,特别是近年来绿色能源科技的兴起,对无铅或少铅电池的应用提出了新的需求。为了开发一款高比能量、长寿命的双极性铅锂电池,本文对复合钛基板、铝基板的制备工艺进行了研究,制备了铅锂电池并对其进行了性能测试。首先,以恒流法在钛板的表面电聚合生成聚苯胺膜层。该方法得到的膜层除了具有良好的导电性外,还可以使水的分解电势明显正移,从而抑制了电池充放电过程中析氢反应的发生。同时聚苯胺膜层的存在还可以避免钛上氧化物的生成,使钛基板在高电极电位和强氧化性条件下保持稳定,保证了电池具有良好的电化学性能和稳定性。以电镀法在铝板的表面生成镀铅层,可以有效的防止铝基体在电池循环中被腐蚀破坏,同时镀铅层与活性物质具有良好的结合力,避免了活性物质在电化学反应中的脱落,保证了电池的性能稳定。装配单体铅锂电池,并对其进行性能测试发现:单体电池以小电流(200m A/g)充放电时,正极活性物质Li Mn2O4的放电比容量为98m Ah/g,以大电流(300m A/g)充放电时,正极活性物质Li Mn2O4的放电比容量为64m Ah/g。钛基双极性电池200m A/g充放电时,Li Mn2O4的放电比容量为113m Ah/g,300m A/g充放电时,Li Mn2O4的放电比容量为95m Ah/g;铝基双极性电池200m A/g充放电时,Li Mn2O4的放电比容量为100-105m Ah/g,300m A/g充放电时,Li Mn2O4的比容量稳定性比较差,在75-110 m A/g的范围内,但也比单体电池高。此外,中性铅锂电池的自放电较小,静置6天后,以200m A/g的电流充放电时,电池仍然可以保持1.240V的放电电压,具有了很好的储存性能。综合来说,双极性铅锂电池具有比单体铅锂电池更优异的性能,是未来可发展的一种新型节铅电池。
[Abstract]:Lead-acid batteries have been playing an irreplaceable role in the field of chemical power supply for a long time, but the traditional lead-acid batteries have some disadvantages such as low specific energy and short life, especially the rise of green energy technology in recent years. New requirements for the application of lead-free or low-lead batteries are proposed. In order to develop a bipolar lead-lithium battery with high specific energy and long life, the preparation process of composite titanium substrate and aluminum substrate was studied in this paper, and the properties of lead-lithium battery were tested. First, Polyaniline film was formed by electropolymerization on the surface of titanium plate by constant current method. In addition to the good conductivity, the film obtained by this method can also make the decomposition potential of water move positively, thus inhibiting the hydrogen evolution reaction in the charging and discharging process of the battery. At the same time, the existence of Polyaniline film can avoid the formation of oxides on the titanium substrate, and keep the titanium substrate stable under the conditions of high electrode potential and strong oxidation, thus ensuring the good electrochemical performance and stability of the battery. Lead plating on the surface of aluminum plate by electroplating can effectively prevent the aluminum substrate from being corroded and destroyed in the battery cycle. At the same time, the lead plating layer has a good binding force with the active material, and the active material is avoided from falling off in the electrochemical reaction. The performance of the battery is guaranteed to be stable. Assembling the lead lithium battery and testing its performance, it is found that when the single battery charges and discharges at a low current (200mAr / g), the discharge specific capacity of the cathode active substance Li Mn2O4 is 98m Ah/g, with a high current (300mAr / g). The specific discharge capacity of the cathode active substance Li Mn2O4 is 64m Ah/g.. The specific discharge capacity of Li Mn2O4 is 113m Ah/g,300m / g during charge / discharge of titanium based bipolar battery Li Mn2O4 is 95 m Ah/g; / g / g charge / discharge specific capacity of Li Mn2O4 is 100-105 Ah/g,300m / g / g charge / discharge capacity of Li / Mn2O4 is 100 ~ 105m Ah/g,300m / g / g charge / discharge specific capacity of Li Mn2O4 is 100 ~ 105m Ah/g,300m / g / g charge / discharge capacity is 100 ~ 105 m Ah/g,300m / g / g charge / discharge specific capacity is 95 m Ah/g; / g / g charge / discharge specific capacity of Li Mn2O4 The specific capacity stability of Mn2O4 is poor. In the range of 75-110 m / g, but also higher than the single cell. In addition, the self-discharge of neutral lead-lithium battery is relatively small. After six days of statics, the battery can still maintain a discharge voltage of 1.240 V when charging and discharging at a current of 200 Ma / g for 6 days. The battery has a good storage performance. In a word, bipolar lead-lithium battery has better performance than single lead-lithium battery, so it is a new type of lead-saving battery that can be developed in the future.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TM912.1

【参考文献】

相关期刊论文 前7条

1 王宏智;李香;胡伟明;姚素薇;张卫国;;电化学合成聚苯胺的研究概况[J];电镀与精饰;2009年07期

2 杨兰生,吕国金,吴三械;双极性铅酸蓄电池的研究及其进展[J];电源技术;1996年04期

3 贺周初;庄新娟;彭爱国;;锂离子电池正极材料尖晶石型锰酸锂的研究进展[J];精细化工中间体;2010年01期

4 周佳盼;米红宇;王吉德;徐友龙;崔青霞;;导电聚合物的电化学制备及其应用研究进展[J];化学研究与应用;2014年07期

5 陈召勇,刘兴泉,高利珍,于作龙;尖晶石LiMn_2O_4高温电化学容量衰减及改进[J];无机化学学报;2001年03期

6 许寒;郭西凤;刘锦平;;锂离子电池正极材料尖晶石型锰酸锂研究现状[J];无机盐工业;2009年05期

7 付春明;于晓微;张晓波;夏继平;张春丽;;尖晶石锰酸锂的表面包覆改性研究[J];无机盐工业;2014年04期



本文编号:2246888

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2246888.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4eb97***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com