应用独立成分分析的太阳能电池图像去噪
发布时间:2018-11-10 11:09
【摘要】:研究用于太阳能电池缺陷检测的电致发光图像噪声去除的问题。太阳能电池电致发光图像是近红外图像,一般来说采集到的图像具有噪声严重、亮度不均匀等特点,使用快速独立成分分析(Fast ICA)将图像分离成两个独立成分,一个是噪声,一个是所需的分离结果。由于分离结果中仍存在椒盐噪声,对分离结果再进行均值滤波,最后得到理想的太阳能电池图像。实验结果表明,此方法对太阳能电池电致发光图像的去噪效果显著,为进一步的图像处理做好了准备。
[Abstract]:The problem of noise removal from electroluminescent images used for defect detection of solar cells is studied. The electroluminescent image of solar cell is near infrared image. Generally speaking, the collected image has the characteristics of serious noise and uneven brightness. The image is separated into two independent components by fast independent component analysis (Fast ICA), one is noise, and the other is noise. One is the desired separation result. Because there is still salt and pepper noise in the separation result, the mean filter is applied to the separation result, and finally the ideal solar cell image is obtained. The experimental results show that the proposed method is effective in de-noising the electroluminescent images of solar cells, and is ready for further image processing.
【作者单位】: 北京工商大学计算机与信息工程学院;
【基金】:北京市教委科研计划面上项目(KM201210011003)
【分类号】:TP391.41;TM914.4
[Abstract]:The problem of noise removal from electroluminescent images used for defect detection of solar cells is studied. The electroluminescent image of solar cell is near infrared image. Generally speaking, the collected image has the characteristics of serious noise and uneven brightness. The image is separated into two independent components by fast independent component analysis (Fast ICA), one is noise, and the other is noise. One is the desired separation result. Because there is still salt and pepper noise in the separation result, the mean filter is applied to the separation result, and finally the ideal solar cell image is obtained. The experimental results show that the proposed method is effective in de-noising the electroluminescent images of solar cells, and is ready for further image processing.
【作者单位】: 北京工商大学计算机与信息工程学院;
【基金】:北京市教委科研计划面上项目(KM201210011003)
【分类号】:TP391.41;TM914.4
【参考文献】
相关期刊论文 前1条
1 王超;蒋晓瑜;柳效辉;;基于电致发光成像理论的硅太阳电池缺陷检测[J];光电子.激光;2011年09期
【共引文献】
相关期刊论文 前10条
1 肖文波;何兴道;王庆;赖相霖;黄苏华;;透镜与电池间距对聚光光伏系统特性影响的实验研究[J];光电子.激光;2012年06期
2 姚红兵;马桂殿;沈宝国;顾寄南;曾祥波;郑学良;蒋光平;;基于图像处理技术的树脂镜片瑕疵分类特征研究[J];光电子.激光;2014年02期
3 赵珊;裴亮;刘翠;王涛;王新亮;朱雪娇;;基于MATLAB图像处理的汽车牌照识别研究[J];测绘工程;2014年01期
4 刘鹏;何雯;肖巍巍;;基于GPGPU技术快速提取数字表面模型[J];测绘地理信息;2014年02期
5 吴s,
本文编号:2322303
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2322303.html
教材专著