大数据环境下变压器状态评估的关联集对分析方法研究
[Abstract]:Power transformer is the key equipment of power system. It is the inevitable trend of power industry to replace the traditional periodic maintenance with condition-based maintenance. The premise of condition maintenance is to accurately evaluate the operating state of transformer according to the information of equipment detection data. With the continuous development of national smart grid construction, the state data collected by power equipment condition monitoring is increasing exponentially. The analysis and research of big data, which is related to the transformer equipment in regional power grid, is becoming more and more important. The data processing and information mining techniques necessary for fault diagnosis and state assessment are of great significance to the smart grid equipment side services. At present, one of the focuses of research on big data is to do statistical search, comparison, classification, clustering and other correlation analysis of massive data. For the power transformer condition evaluation on the equipment side, most methods either focus on the research of method theory and ignore the correlation analysis and internal relation of the data information of transformer condition detection. Either the transformer state information is fuzzy, random and incomplete information caused by uncertainty. In this paper, a transformer fault diagnosis method combining set pair analysis and association rules under big data environment of smart grid is proposed in this paper. First, according to the relational database theory and related standards, combined with the actual operation experience, select the most representative and can accurately and effectively reflect the transformer operation status as the fault type and fault symptoms; The fault type and fault symptom are classified and managed by using the support degree of association rules, the coupling relation between fault type and fault symptom is analyzed, and the fault symptom set of each fault type is reduced to establish the state evaluation model. In the method of determining weight coefficient, by comparing and calculating the confidence degree of association rule, the constant weight coefficient of fault symptom is obtained, which solves the problem that the expert's subjective opinion affects the accuracy of weight. At the same time, the factor spatial variable weight theory is used in the fault type, and the weight coefficient is determined according to the grading of each fault type, which can effectively avoid the defect that the order type of the constant weight coefficient can not accurately reflect the overall health condition of the transformer. Secondly, the operation state of power transformer is classified, and the number of connection elements is determined, and the expression of connection degree is constructed, which improves the accuracy of the evaluation of transformer condition and fault diagnosis system. The relative deterioration degree and membership degree in fuzzy theory are introduced to construct the same difference and inverse evaluation matrix. The introduction of fuzzy theory has certain scientific basis and can effectively avoid the subjective problem of expert opinion or experience. For the expression of multivariate relation degree, the differential coefficient is treated by the method of average division, and combined with the weight coefficient determined by association rules, the overall operating state of transformer and the relation value of each fault type are obtained. Compare the level of state to assess and diagnose the transformer's health. Finally, an example and statistical results are given to verify the correctness and validity of the proposed method. Compared with the association rules and set pair analysis which are used in transformer condition evaluation separately, the proposed method has higher positive judgment rate, and it also performs well in multi-fault diagnosis.
【学位授予单位】:华中科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM41
【相似文献】
相关期刊论文 前10条
1 谢庆;律方成;郑娜;李燕青;李成榕;;基于可拓理论的变压器状态综合评估[J];高压电器;2008年04期
2 吴建锋;刘卓明;;基于综合权重的变压器状态评估[J];广东电力;2009年09期
3 郑朝晖;徐伟;吕鸿宾;张登;;变压器状态评估技术现状研究[J];四川电力技术;2012年05期
4 阮羚;谢齐家;高胜友;聂德鑫;卢文华;张海龙;;人工神经网络和信息融合技术在变压器状态评估中的应用[J];高电压技术;2014年03期
5 田颖;苑津莎;张卫华;;基于改进灰靶理论的变压器状态评估[J];黑龙江电力;2010年06期
6 李新叶;李新芳;;基于改进层次聚类的同家族变压器状态变化规律分析[J];电力系统保护与控制;2011年19期
7 ;变压器状态监测与故障诊断技术[J];电气制造;2013年08期
8 徐敏;钟文慧;刘井萍;左重华;杜伟;朱丽;;基于模糊理论的变压器状态评估[J];南昌大学学报(工科版);2009年01期
9 代文章;;变压器状态综合评估方法[J];电气技术;2011年11期
10 孙娜;王玉凡;陆戌明;;理想点法在变压器状态评估中的应用[J];电力科学与工程;2011年03期
相关会议论文 前6条
1 李锐;;局部放电在线监测系统在变压器状态评价中的应用与分析[A];2009年云南电力技术论坛论文集(文摘部分)[C];2009年
2 李锐;;局部放电在线监测系统在变压器状态评价中的应用[A];2009年全国输变电设备状态检修技术交流研讨会论文集[C];2009年
3 刘欣;颜秋容;;基于以太网的变压器状态综合监测[A];电工理论与新技术学术年会论文集[C];2005年
4 吴琦;;基于人工智能技术的变压器状态监测与故障诊断专家系统的研究[A];华东六省一市电机(电力)工程学会输配电技术研讨会2005年年会论文集[C];2005年
5 张鹏翔;周方洁;刘笑梅;;变压器状态监测与诊断系统[A];全国火电大机组(600MW级)竞赛第十届年会论文集[C];2006年
6 张鹏翔;周方洁;刘笑梅;;变压器状态监测与诊断系统[A];全国火电大机组(300MW级)竞赛第三十五届年会论文集[C];2006年
相关博士学位论文 前3条
1 梁永亮;变压器状态评估方法与在线监测优化研究[D];山东大学;2015年
2 吴立增;变压器状态评估方法的研究[D];华北电力大学(河北);2005年
3 袁志坚;电力变压器状态维修决策方法的研究[D];重庆大学;2004年
相关硕士学位论文 前10条
1 曾丹乐;基于多源信息融合的变压器状态评估关键技术研究[D];上海交通大学;2015年
2 韩丽维;基于云模型的变压器运行状态综合评估方法研究[D];华北电力大学;2015年
3 李换玲;基于IEC 61850的变压器状态监测系统研究[D];齐鲁工业大学;2015年
4 董玉坤;基于关联分析和云模型的变压器状态评估方法研究[D];东北电力大学;2016年
5 刘嘉;基于免疫原理的变压器状态识别方法研究[D];华东交通大学;2016年
6 谢龙君;大数据环境下变压器状态评估的关联集对分析方法研究[D];华中科技大学;2014年
7 谢红玲;变压器状态维修信息管理系统的研究[D];华北电力大学(河北);2004年
8 田颖;变压器状态评估信息管理系统设计[D];华北电力大学;2011年
9 韩辉;变压器状态评估系统的研究与实现[D];华北电力大学(河北);2010年
10 纪航;变压器状态综合评估方法研究[D];华北电力大学(河北);2006年
本文编号:2378760
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2378760.html