电容式电压互感器速饱和阻尼器优化计算模型研究
[Abstract]:Capacitive voltage transformer (Capacitor Voltage Transformer,CVT (capacitive voltage transformer) is an important electrical equipment in 110kV and above voltage grade of power system. Because CVT is mainly composed of capacitance and non-linear inductor, it is easy to excite its own harmonic ferroresonance under transient condition. At present, the main method to restrain CVT ferroresonance is to install dampers on the secondary side of CVT. Due to the excellent performance and damping characteristic of velocity saturation damper, it is widely used in CVT dampers. The value of damper resistance plays an important role in the damping effect of damper. However, there is little research on the selection of resistance values of velocity saturated dampers, and only a large upper limit range of damping resistance can be calculated by some formulas. In addition, because the calculation model is simple, the results often deviate greatly from the actual engineering situation. Therefore, in engineering, generally through a large number of ferroresonance tests to finally determine the optimal damping resistance required for CVT, this method has a large workload, resulting in a great waste of manpower and material resources. In addition, the research of CVT ferroresonance simulation model based on electromagnetic transient calculation software ATP-EMTP improves the accuracy of damping resistance selection, but the calculation is very large, and the accurate parameters of each element are needed. Based on the ferroresonance phenomenon and circuit oscillation conditions, the optimal calculation model of damping resistance selection for CVT velocity saturation dampers is established in this paper. According to the equivalent circuit of CVT, the loop equation of CVT equivalent circuit is established at first, and then the partial differential equation of one-dimensional cubic constant coefficient must be satisfied by using this equation to derive the damping resistance reaching damping condition. By solving the mathematical equation, the damping condition of CVT ferroresonance is obtained. According to this condition, the range of damping resistance can be calculated easily, and the value of damping resistance can be limited to a very small range. The calculation model is used to calculate the damping resistance of two CVT products in Wuxi-Japan New Factory of Jiangsu Province. It is found that the damping resistance calculated by the model is very close to the engineering selection resistance. The correctness and feasibility of the calculation model are proved. The calculation of this method is small and it can be used to guide engineering design. In order to fully demonstrate the correctness of the optimization model, the methods of modeling, simulation and field experiment are used to verify the range of damping resistance calculated by the optimal model of the CVT velocity saturation damper in this paper. In the aspect of software simulation, the CVT simulation model is established by using EMTP-ATP software, and the range of damping resistance determined by the calculation model is simulated by ferroresonance. In the field of experimental verification, several damping resistance values in the range determined by the computational model are selected to carry out ferroresonance experiments respectively. The results of simulation and experiment show that the model can effectively dampen ferroresonance, and it is proved that the model can solve the difficult problem of choosing damping resistance of CVT dampers. A new idea is provided for the selection of damping resistance of velocity saturated dampers in engineering design, and it is of great significance to the design of CVT.
【学位授予单位】:华中科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TM451
【相似文献】
相关期刊论文 前10条
1 陈亮;张京伟;;新型阻尼器的理论与试验研究[J];液压与气动;2011年12期
2 R. I. Skinner;史金纳;R. G. Tjler;戴勒;A. J. Heine;海尼;W. H. Robinson;罗宾逊;严竹平;;用于结构抗震的滞忯阻尼器[J];工程抗震;1980年03期
3 Thomas Szirtes;曹元彪;;正确选用阻尼器[J];矿山机械;1990年03期
4 张冶;;机械式压力阻尼器的类型及其应用[J];自动化仪表;1993年06期
5 王飞跃,聂玉光,金兆熊;离心机下阻尼器的非线性特性研究[J];清华大学学报(自然科学版);1998年10期
6 刘晖,唐家祥;主动调频阻尼器的参数优化研究[J];噪声与振动控制;2000年03期
7 段权,徐晖;旋转式硅油阻尼器动态特性实验研究[J];应用力学学报;2001年02期
8 杨智春,李斌;多层滑动极板式电流变阻尼器的动力学建模[J];机械科学与技术;2002年S1期
9 黄震宇,陈大跃,谢国权,朱成刚,赵春宇;电流变阻尼器的频率自适应减振控制[J];机械工程学报;2002年04期
10 杨国华,李爱群,程文p<;结构控震设计中流体阻尼器的指数选择与控制系统设计[J];工业建筑;2003年06期
相关会议论文 前10条
1 张玲凌;杨智春;孙浩;温金鹏;;一种新型非线性阻尼器的设计及特性研究[A];第九届全国振动理论及应用学术会议论文集[C];2007年
2 贾九红;黄修长;杜俭业;汪玉;华宏星;;粘滞性阻尼器的设计方法研究[A];第九届全国振动理论及应用学术会议论文集[C];2007年
3 贾九红;黄修长;杜俭业;汪玉;华宏星;;粘滞性阻尼器的设计方法研究[A];第九届全国振动理论及应用学术会议论文摘要集[C];2007年
4 王维凝;苏亮;闫维明;;大行程铅剪切阻尼器的数值模拟与试验研究[A];防振减灾工程理论与实践新进展(纪念汶川地震一周年)——第四届全国防震减灾工程学术研讨会会议论文集[C];2009年
5 闫维明;苏亮;彭凌云;王维凝;;铅阻尼器的研究与应用概况[A];第七届全国工程结构安全防护学术会议论文集[C];2009年
6 周海俊;王石城;孙利民;张文生;;考虑阻尼器刚度影响的张力梁复特征值分析[A];第十九届全国桥梁学术会议论文集(下册)[C];2010年
7 王湛;李江刚;潘建荣;;装有金属阻尼器的钢结构有限元分析[A];钢结构工程研究⑧——中国钢协结构稳定与疲劳分会第12届(ASSF-2010)学术交流会暨教学研讨会论文集[C];2010年
8 王晓斌;陈五星;胡军华;周勇;;蓄能式阻尼器的仿真与试验研究[A];中国核科学技术进展报告——中国核学会2009年学术年会论文集(第一卷·第3册)[C];2009年
9 杨光;陈塑寰;杨志军;;电流变阻尼器在结构中的最优位置[A];振动利用技术的若干研究与进展——第二届全国“振动利用工程”学术会议论文集[C];2003年
10 肖应廷;廖瑛;;粘性阻尼器对减小展开式太阳翼锁定冲击力矩的研究[A];'2008系统仿真技术及其应用学术会议论文集[C];2008年
相关重要报纸文章 前5条
1 程超 李虹 王占奎;上海环球金融中心“首装”风阻尼器[N];中华建筑报;2007年
2 王桂兰 席斯;安装阻尼器为建筑增加一份抗震保险[N];中国建材报;2003年
3 本报记者 席斯;安装阻尼器 为豪宅加一份保险[N];财经时报;2003年
4 驻太仓首席记者 徐允上 通讯员 庄超;“天核”参与核电国产[N];苏州日报;2010年
5 首席记者 任荃;“弹簧”以柔克刚 校舍岿然不倒[N];文汇报;2009年
相关博士学位论文 前10条
1 付华;Nano-MR阻尼器研究及其应用[D];浙江大学;2004年
2 郑杰;曲面钢板阻尼器及其结构的理论与试验研究[D];东南大学;2015年
3 曲激婷;位移型和速度型阻尼器减震对比研究及优化设计[D];大连理工大学;2008年
4 郝德刚;多层钢板转子阻尼器及相关技术研究[D];哈尔滨工业大学;2008年
5 武s,
本文编号:2458372
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2458372.html