容性电气设备绝缘性能在线检测方法的研究
[Abstract]:As an important part of electrical equipment, insulating material plays an important role in isolating different potential and ensuring the normal operation of the equipment, which determines the service life of electrical equipment to a great extent. In high voltage substations, the number of capacitive equipment usually accounts for 40% / 50% of the total electrical equipment in the substation. It is very important to ensure the good insulation of capacitive equipment to ensure the safe and reliable operation of power system. At present, most of the on-line testing methods for insulation performance of capacitive equipment are based on dielectric loss factor as the first choice measurement parameter, because the dielectric loss value is small, and is easily affected by the interference factors of the power network. Therefore, it is still of great significance to search for high-precision measurement methods. The calculation method of dielectric loss factor based on Hilbert transform in this paper is not affected by the fluctuation of power network frequency and non-integral period sampling. The maximum absolute error of simulation is in the order of 10 ~ 5, considering the influence of power network harmonic on the calculation results. When the total voltage harmonic distortion rate is in the normal range, the calculation method can still ensure a good calculation accuracy, and the error level is almost unchanged. In order to obtain the fundamental components of sampled voltage and current signals for dielectric loss calculation and the on-line monitoring data for processing dielectric loss values, we adopt the empirical mode decomposition method based on nonlinear autoregressive neural network (NAR) data to predict endpoint continuation. The method of signal decomposition is especially suitable to deal with nonlinear and non-stationary data series, and its effect is better than that of symmetric extremum method which is often used. When the power network waveform is disturbed and fluctuated seriously, the result is better than that of the symmetric extremum method which is often used. The fundamental component can still be decomposed accurately. At the same time, in order to further reduce the measurement error and eliminate the influence of noise, in the pre-processing stage of sampled data, we adopt the alternating hybrid filter of mathematical morphology and the filtering scheme of wavelet de-noising. These methods are used to process the sampled data step by step and calculate the dielectric loss factor. The simulation results show that the error is within the required range of dielectric loss measurement and can achieve the desired accuracy.
【学位授予单位】:中国石油大学(华东)
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM934.3
【相似文献】
相关期刊论文 前10条
1 王洪明;李庆昌;孙成军;;油介质损耗因数异常的原因分析及处理[J];华电技术;2011年02期
2 王宇;梁如清;;介质损耗因数的新定义[J];广东电力;2012年11期
3 武克先;;消除介质损耗因数测量误差的几种方法[J];电气试验;2002年03期
4 龙锋,王富荣,李大进,刘永生;容性设备介质损耗因数在线监测方法及误差分析研究[J];电力科学与工程;2004年02期
5 赵彤,李庆民,陈平;提高介质损耗因数监测准确度的算法[J];清华大学学报(自然科学版);2005年07期
6 张介秋,梁昌洪,韩峰岩,陈砚圃;介质损耗因数的卷积窗加权算法[J];电工技术学报;2005年03期
7 李天云;范夕庆;汪剑波;余志飞;;基于小波滤波和跟踪微分器的介质损耗因数检测方法[J];电网技术;2011年04期
8 刘日升;李海军;张元增;;油介质损耗因数对变压器整体的影响[J];北京农业;2012年03期
9 陈志高;;介质损耗因数出现负值原因分析[J];广西电力;2012年06期
10 彭季洪;论测试条件及环境对介质损耗因数的影响[J];绝缘材料通讯;1998年04期
相关会议论文 前2条
1 李学文;孙可平;;小波消噪在介质损耗因数检测中的应用[A];中国物理学会第十五届静电学术年会论文集[C];2009年
2 韩向明;李国锋;王晋国;;一种计算电力电缆介质损耗因数的方法[A];中国物理学会静电专业委员会第十三届学术年会论文集[C];2006年
相关硕士学位论文 前10条
1 杜伟平;数字化电缆介损扫频测试系统设计[D];大连理工大学;2015年
2 孟祥恒;容性电气设备绝缘性能在线检测方法的研究[D];中国石油大学(华东);2014年
3 隋文波;调频串联谐振装置用介质损耗因数测量系统研制[D];哈尔滨理工大学;2004年
4 程辉;基于准同步算法的介质损耗因数测量系统的研制[D];哈尔滨理工大学;2007年
5 杨梦迪;基于扫频方式的电缆介质损耗因数检测系统研究[D];大连理工大学;2013年
6 龙锋;电容型设备介质损耗因数在线监测研究[D];西南交通大学;2004年
7 司昌健;基于DSP的高压容性电力设备介质损耗因数测量[D];哈尔滨理工大学;2010年
8 李冰林;介质损耗因数在线检测的研究与实现[D];景德镇陶瓷学院;2007年
9 王静;介质损耗因数在线监测数据分析与绝缘诊断的研究[D];东北电力大学;2008年
10 陈丽;电容型设备介质损耗因数在线检测技术的研究[D];河北农业大学;2004年
,本文编号:2458855
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2458855.html