大型汽轮机转子—刷式密封系统动力学特性研究
[Abstract]:Modern thermal power generation technology has promoted the development of high performance turbine mechanical sealing technology because of the higher and higher technical and economic requirements of power plant. Because the advanced brush sealing technology can significantly improve the reliability and working efficiency of large thermal power units, brush sealing has been more and more used in power plants. However, after a long period of operation, it is found that the friction heat between the brush seal and the rotating shaft not only affects the wire brushing, and then affects the sealing characteristics and flow field characteristics, but also affects the natural vibration characteristics of the rotor. Therefore, it is necessary to study the flow field characteristics of brush seal and the fluid-solid coupling vibration characteristics of rotor-brush seal system, which also reflects important scientific value and practical significance. In this paper, the relationship between the geometry and mechanics of a single brush wire and the rotor is studied, and then the expression of the force acting on the rotor by the whole circle brush wire is obtained. Then, by analogy with Thomas eight-parameter model, the rotor-brush seal force is fitted by quadratic multinomial fitting, and the expression of support stiffness coefficient can be obtained according to Taylor formula, and the rotor-brush seal stiffness model is deduced, which is easy to be applied. The simulation is carried out, which provides the model basis for the modal analysis of rotor-brush seal-bearing system in chapter 3 and chapter 5. The finite element analysis method and finite element equation are introduced. at the same time, the corresponding modeling element is briefly introduced, and then the finite element model is established according to the actual 10OOMW unit of a power plant. The natural frequency and vibration mode are solved by modal analysis without thermal stress and centrifugal force. The finite element numerical simulation results are compared with the data provided by the power plant, and it is found that the simulation results are more accurate, which verifies the correctness of the model and lays a foundation for the modal analysis under the action of fluid-solid coupling in the fifth chapter. The flow field characteristics of rotor-brush seal system are studied. The numerical analysis model of porous media is established, and the viscous resistance coefficient and inertia resistance coefficient of brush seal are calculated by using empirical formula, and then the leakage rate of brush seal outlet is solved by using FLUENT module in ANSYS Workbench collaborative platform. Compared with the experimental data in the literature, the rationality and correctness of using this method to calculate the resistance coefficient are indirectly verified. Then the flow field and temperature field of brush seal are analyzed. at the same time, the effects of specific pressure and rotating speed on the temperature field and the effects of pressure difference, rotating speed, interference and friction heat flow on the maximum temperature are studied. The effect of fluid-thermal-structure coupling on the stress and deformation of rotor-brush seal system is studied. On the basis of the flow field analysis in the third chapter, the fluid-thermal-structure unidirectional fluid-solid coupling simulation is carried out by using FLUENT module and Static Structural module, with emphasis on the simultaneous loading of flow field temperature load and centrifugal force load. The influence of rotating speed and interference on the stress and deformation of rotor. The modal analysis of rotor with thermal stress and centrifugal force is carried out by using Moda film block and Mechanical APDI module, and compared with the mode without fluid-solid coupling in chapter 3, the influence of fluid-solid coupling on the natural vibration characteristics of rotor is analyzed.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TM621
【相似文献】
相关期刊论文 前10条
1 吉桂明;汽轮机转子的挠曲及其解决途径[J];热能动力工程;2003年06期
2 李宏强;张超群;孙永莹;;长期运行后汽轮机转子持久强度性能研究[J];东北电力技术;2007年12期
3 王上一;研究汽轮机转子振动特性以早期发现事故[J];发电设备;1987年03期
4 杨昆;张保衡;;汽轮机转子安全寿命曲线制定方法[J];华北电力学院学报;1988年04期
5 杨昆,吕跃刚,袁军,许伟;汽轮机转子热应力分析与控制方法[J];河北电力技术;1993年05期
6 裴世英,,李续军;汽轮机转子寿命的监测与管理[J];热力发电;1995年01期
7 周广顺,田国成,张超杰;防止汽轮机转子永久性弯曲探讨[J];中国电力;1997年12期
8 张延峰,盛伟,杜祖成,夏永军,郭玉双;对汽轮机转子呈负推力的辨析[J];沈阳电力高等专科学校学报;2000年01期
9 周桐,徐健学;汽轮机转子裂纹的时频域诊断研究[J];动力工程;2001年02期
10 郭钰锋,武志文,于达仁;200MW汽轮机转子泊松效应的参数识别[J];汽轮机技术;2001年01期
相关会议论文 前10条
1 工艺处;雷文;;汽轮机转子制造技术研究(摘要)[A];2010全国机电企业工艺年会《上海电气杯》征文论文集[C];2010年
2 岳建海;黄毅;;汽流和油膜作用下的汽轮机转子振动特性研究[A];2009年中国智能自动化会议论文集(第二分册)[C];2009年
3 杨宇;;汽轮机转子温度计算中惯性环节系数确定方法[A];超超临界机组技术交流2013年会论文集[C];2013年
4 张立君;刘景春;王九崇;;应力松驰法直轴技术在800MW汽轮机转子上的应用[A];全国火电600MWe级机组能效对标及竞赛第十四届年会论文集[C];2010年
5 谢永慧;邓实;张荻;丰镇平;;汽轮机转子焊接的三维有限元数值模型研究[A];2009年中国动力工程学会透平专业委员会2009年学术研讨会论文集[C];2009年
6 辛晓辉;曹树谦;;大型汽轮机转子在蒸汽力和油膜力作用下非线性动力学特性计算研究[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年
7 刘华锋;王炜哲;蒋浦宁;刘应征;陈汉平;;超超临界汽轮机转子蠕变对低周疲劳损伤的影响分析[A];第十五届全国疲劳与断裂学术会议摘要及论文集[C];2010年
8 高丽华;孙盘康;王国忠;赵宏伟;王晓良;杨建明;;GE 350MW汽轮机转子突发性振动故障诊断与处理[A];全国火电大机组(300MW级)竞赛第三十五届年会论文集[C];2006年
9 蔡正德;;34CrNi_3Mo汽轮机转子主轴热处理工艺的改进[A];第九届全国化学工艺学术年会论文集[C];2005年
10 赵景辉;;汽轮机转子轴颈划伤原因及处理[A];全国火电200MW级机组技术协作会第24届年会论文集[C];2006年
相关重要报纸文章 前1条
1 梁娟 周一工;汽轮机转子材料的热处理工艺评估研究[N];世界金属导报;2012年
相关博士学位论文 前4条
1 王坤;大型汽轮机转子寿命问题研究[D];华中科技大学;2004年
2 吕方明;汽轮机转子低周疲劳寿命评价关键技术问题研究[D];华中科技大学;2014年
3 孙永健;大型汽轮机转子低周疲劳损伤评估问题研究[D];上海交通大学;2014年
4 朱明亮;汽轮机转子钢近门槛值区的裂纹扩展与超高周疲劳行为研究[D];华东理工大学;2011年
相关硕士学位论文 前10条
1 江峰;汽轮机转子故障状态下的振动仿真分析[D];武汉理工大学;2009年
2 杨凤;汽轮机转子的热应力分析和疲劳寿命研究[D];沈阳工业大学;2007年
3 柴保桐;大型汽轮机转子—刷式密封系统动力学特性研究[D];东南大学;2015年
4 白云;600MW汽轮机转子低周疲劳寿命计算及研究[D];长沙理工大学;2009年
5 周亚武;汽轮机转子有限元建模及动力学分析[D];华中科技大学;2009年
6 甘霖;基于有限单元法的汽轮机转子寿命评估研究[D];武汉理工大学;2011年
7 梁天杰;大型汽轮机转子热状态在线监测系统[D];华北电力大学;2001年
8 王尧明;国产300MW汽轮机转子寿命分配与管理研究[D];武汉大学;2004年
9 张涛;汽轮机转子—轴承系统稳定性仿真分析及优化方法研究[D];武汉理工大学;2008年
10 靳向往;汽轮机转子工作热变形预测及其热跑工装研制[D];哈尔滨工业大学;2010年
本文编号:2482411
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2482411.html