当前位置:主页 > 科技论文 > 电力论文 >

微生物燃料电池产电性能及生物阴极反硝化研究

发布时间:2019-06-04 18:10
【摘要】:微生物燃料电池(MFC)作为一种新型的生物反应器,被人们广泛的研究。这种实验装置和理念的发展对能源和环境是一种至关重要的改革。对污水处理来说可以大幅度的降低运行成本。在现今社会的能源危机和环境污染严重的今天是十分受人们关注的一种新型能源。单室空气阴极型微生物燃料电池,以实验室中同步运行的双泥生物膜亚硝化反硝化除磷装置中的污泥接种到单室微生物燃料电池当中,阳极接种污泥取自厌氧池,以实际生活污水为微生物燃料电池阳极液,同时研究该系统处理生活污水并同时产电的效果。双室微生物燃料电池采用实验室同步运行的双泥生物膜亚硝化反硝化除磷装置中的污泥接种到双室微生物燃料电池当中,阳极接种污泥取自厌氧池,阴极接种污泥取自缺氧池,能够达到处理生活污水的同时产生电能。实验结果表明以碳毡为微生物燃料电池的阳极材料,石墨板为阴极材料,以空气作为阴极电子受体的单室微生物燃料电池处理实际生活污水,微生物燃料电池能够成功稳定运行,单室微生物燃料电池外接不同电阻时,当外接电阻为1000Ω时,MFC的最大功率为31.5mW·m-3,当外接电阻为1000Ω时,微生物燃料电池的阳极COD处理效果最好,去除率为82.1%,由于接种污泥为混合菌种,所以对阳极室内的氨氮因此一定的处理效果,但外接电阻的大小对微生物燃料电池阳极内的氨氮的去除影响很小。单室微生物燃料电池阳极区面积大小不同时,当阳极区面积为64cm2时,微生物燃料电池的平均输出电压和最大功率密度分别为0.45V和41.4mW·m-3,当微生物燃料电池阳极区面积为64cm2时,微生物燃料电池阳极COD去除率为84.83%,此时去除率最高。当向微生物燃料电池阳极室内投加KCl电解质浓度为80mmol·L"1时,微生物燃料电池的平均输出电压和最大功率密度最大,分别为0.55V和51.4mW·m-3,阳极COD去除率为80.83%。而以碳毡为微生物燃料电池阳极和阴极材料,以硝酸盐为阴极的电子受体的双室微生物燃料电池处理实际生活污水,微生物燃料电池能够成功稳定运行,阴极以硝酸盐为电子受体的双室微生物燃料电池当硝酸盐质量浓度为160mg·L-1时,MFC的产电效果最好,平均输出电压和最大功率密度分别为0.28V和35.39mW·m-3。在阴极硝酸盐质量浓度为160mg·L-1时,阳极分解有机物的量增加,COD的去除效果最好,去除率为93.22%。随着阴极硝酸盐质量浓度变化,阳极氨氮的去除率分别为20.58%、21.05%、20.98%、20.62%、19.96%、20.23%,变化很小,所以阴极硝酸盐质量浓度对阳极氨氮的去除率的影响很小。阴极投加不同浓度有机物时,由于发生了非电极反硝化,所以微生物燃料电池阴极的亚硝酸盐积累浓度减小,当C/N增加到3时,亚硝酸盐的积累浓度接近于零。不加入有机物时,MFC的平均输出电压和最大功率密度分别为0.28V和35.39mW·m-3,当加入有机物时,MFC的平均输出电压和最大功率密度分别为0.22V和28.3mW·m-3,由于阴极的硝酸盐大量的发生了非电极反硝化,所以产电与阴极不加入有机物时相比效果不好。阳极处理情况与不加有机物相比处理效果不好。当外接电阻为1000Ω时,微生物燃料电池的产电效果最好,其平均输出电压和最大功率密度分别为0.19V和20.6mW·m3。此时,由于产电效果最好,所以MFC的水处理效果出最好。当微生物燃料电池阴阳两极电极间距不同时,当微生物燃料电池的电极间距为10cm时,电池的平均输出电压和最大功率密度分别为0.22V和29mW.m-3。当单室微生物燃料电池产电情况和水处理情况最好时,即电池外接电阻为1000Ω、阳极区面积为64cm2、向阳极投加KCl电解质为80mmol·L-1时,微生物燃料电池的平均输出电压和最大功率密度分别为0.55V和31.5mW·m-3,阳极COD去除率为80.83%;而当双室微生物燃料电池产电和水处理情况最好时,即电池外接电阻为1000Ω、阴极硝酸盐浓度为160mg·L-1、阴极C/N比为2、电极间距为10cm、阴极与阳极面积均为64cm2、向阳极投加KCl电解质为80mmol·L-1时,微生物燃料电池平均输出电压和最大功率密度分别为0.22V和29mW·m-3,阴极硝酸盐去除率高达92%,阳极COD去除率为80%。从以上微生物燃料电池均采用本实验中产电和水处理效果最好的情况数据比较可知,单室微生物燃料电池的性能更优,但双室微生物燃料电池的阴极可能处理含有硝酸盐的废水,所以此种双室微生物燃料电池更具发展前景。
[Abstract]:The microbial fuel cell (MFC), as a new type of bioreactor, is widely studied. The development of such experimental devices and ideas is a vital reform of energy and the environment. And the running cost can be greatly reduced for sewage treatment. Nowadays, the energy crisis and environmental pollution of the present society are a new type of energy which is very concerned by the people. the invention relates to a single-chamber air cathode-type microbial fuel cell, which is used for inoculating the sludge in a single-chamber microbial fuel cell by a double-mud biological film nitrosation denitrification and dephosphorization device which is synchronously operated in a laboratory, wherein the anode inoculation sludge is taken from an anaerobic tank, and the actual domestic sewage is an anode liquid of a microbial fuel cell, At the same time, the effect of the system on the treatment of domestic sewage and the simultaneous production of electricity is also studied. the double-chamber microbial fuel cell is inoculated into a double-chamber microbial fuel cell by a double-mud biological film subnitrating denitrification and dephosphorization device which is synchronously operated by a laboratory, the anode inoculation sludge is taken from an anaerobic tank, and the cathode inoculation sludge is taken from an anoxic tank, And the electric energy can be generated at the same time of treating the domestic sewage. the experimental results show that the carbon felt is the anode material of the microbial fuel cell, the graphite plate is a cathode material, the air is used as a single-chamber microbial fuel cell of the cathode electron acceptor to treat the actual domestic sewage, and the microbial fuel cell can be stably operated, when the external resistance is 1000惟, the maximum power of the MFC is 31.5 mW 路 m-3, when the external resistance is 1000惟, the COD treatment effect of the anode of the microbial fuel cell is the best, the removal rate is 82.1%, and the inoculated sludge is a mixed strain, Therefore, the ammonia nitrogen in the anode chamber has a certain treatment effect, but the size of the external resistor has little effect on the removal of the ammonia nitrogen in the anode of the microbial fuel cell. when the area of the anode region of the single-chamber microbial fuel cell is different, when the area of the anode region is 64 cm2, the average output voltage and the maximum power density of the microbial fuel cell are 0.45 V and 41.4 mW 路 m-3, respectively, and when the area of the anode region of the microbial fuel cell is 64 cm2, The removal rate of COD of the anode of the microbial fuel cell was 84.83%, and the removal rate was the highest. When the concentration of KCl electrolyte is 80 mmol 路 L "1 in the anode of the microbial fuel cell, the average output voltage and the maximum power density of the microbial fuel cell are respectively 0.55 V and 51.4 mW 路 m-3, and the COD removal rate of the anode is 80.83%. and the carbon felt as the anode and the cathode material of the microbial fuel cell, the double-chamber microbial fuel cell with the electron acceptor with the nitrate as the cathode is used for treating the actual domestic sewage, and the microbial fuel cell can be stably operated, When the nitrate mass concentration of the two-chamber microbial fuel cell with nitrate as the electron acceptor is 160 mg 路 L-1, the electric effect of the MFC is the best, the average output voltage and the maximum power density are 0.28 V and 35.39 mW 路 m-3, respectively. When the nitrate mass concentration of the cathode is 160 mg 路 L-1, the amount of organic matter decomposed by the anode is increased, the removal effect of COD is the best, and the removal rate is 93.22%. With the change of the cathode nitrate mass concentration, the removal rate of the anode ammonia nitrogen was 20.58%, 21.05%, 20.98%, 20.62%, 19.96% and 20.23%, respectively. The concentration of nitrite in the cathode of the microbial fuel cell is reduced when the non-electrode denitrification occurs due to the non-electrode denitrification, and when the C/ N is increased to 3, the accumulation concentration of the nitrite is close to zero. The average output voltage and the maximum power density of the MFC are 0.28 V and 35.39 mW 路 m-3, respectively. When the organic matter is added, the average output voltage and the maximum power density of the MFC are 0.22V and 28.3 mW 路 m-3, respectively. So that the effect is not good when the electricity generation and the cathode are not added with the organic matters. The treatment effect of the anode is not good compared with the addition of the organic matter. The average output voltage and the maximum power density of the microbial fuel cell are 0.19V and 20.6 mW 路 m3, respectively, when the external resistance is 1000惟. At this time, the water treatment effect of the MFC is the best due to the best electric power generation effect. When the spacing of the anode and cathode electrodes of the microbial fuel cell is different, the average output voltage and the maximum power density of the battery are 0.22 V and 29 mW. m-3, respectively, when the electrode pitch of the microbial fuel cell is 10 cm. The average output voltage and the maximum power density of the microbial fuel cell are 0.55 V and 31.5 mW 路 m-3, respectively, when the electricity generation condition and the water treatment condition of the single-chamber microbial fuel cell are the best, that is, the external resistance of the battery is 1000惟, the area of the anode area is 64 cm2, and the KCl electrolyte is added to the anode to be 80 mmol 路 L-1, the average output voltage and the maximum power density of the microbial fuel cell are 0.55 V and 31.5 mW 路 m-3, respectively. the removal rate of the COD of the anode is 80.83%, and when the electric and water treatment conditions of the double-chamber microbial fuel cell are the best, the external resistance of the battery is 1000惟, the concentration of the cathode nitrate is 160 mg 路 L-1, the cathode C/ N ratio is 2, the distance between the electrodes is 10 cm, the area of the cathode and the anode is 64 cm2, The average output voltage and the maximum power density of the microbial fuel cell were 0.22 V and 29 mW 路 m-3 at the time of adding the KCl electrolyte to the anode, and the removal rate of the cathode nitrate was as high as 92%, and the removal rate of the anode COD was 80%. It is known from the above microbial fuel cell that the performance of the single-chamber microbial fuel cell is superior, but the cathode of the dual-chamber microbial fuel cell may process wastewater containing nitrate, Therefore, the double-chamber microbial fuel cell has a more development prospect.
【学位授予单位】:沈阳建筑大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:X703;TM911.45

【相似文献】

相关期刊论文 前10条

1 连静;冯雅丽;李浩然;刘志丹;周良;;直接微生物燃料电池的构建及初步研究[J];过程工程学报;2006年03期

2 关毅;张鑫;;微生物燃料电池[J];化学进展;2007年01期

3 洪义国;郭俊;孙国萍;;产电微生物及微生物燃料电池最新研究进展[J];微生物学报;2007年01期

4 丁平;邵海波;刘光洲;段东霞;麻挺;陈嗣俊;王建明;张鉴清;;应用需盐脱硫弧菌的微生物燃料电池发电研究(英文)[J];电化学;2007年02期

5 园丁;;微生物燃料电池:既处理污水又发电[J];污染防治技术;2007年03期

6 刘登;刘均洪;刘海洲;;微生物燃料电池的研究进展[J];化学工业与工程技术;2007年05期

7 张广柱;刘均洪;;微生物燃料电池研究和应用方面的最新进展[J];化学工业与工程技术;2008年04期

8 孙健;胡勇有;;废水处理新理念——微生物燃料电池技术研究进展[J];工业用水与废水;2008年01期

9 王万成;陶冠红;;微生物燃料电池运行条件的优化[J];环境化学;2008年04期

10 ;微生物燃料电池或成汽车节能环保解决方案[J];材料导报;2008年07期

相关会议论文 前10条

1 顾忠泽;吴文果;;微生物燃料电池的研究[A];中国化学会第27届学术年会第05分会场摘要集[C];2010年

2 赵峰;;来自废水的能量-微生物燃料电池[A];2010年海峡两岸环境与能源研讨会摘要集[C];2010年

3 李正龙;刘红;孔令才;韩梅;;可利用空间基地有机废物的微生物燃料电池预研[A];中国空间科学学会第16届空间生命学术研讨会论文摘要集[C];2005年

4 孙健;;废水处理新理念——微生物燃料电池技术研究进展[A];节能环保 和谐发展——2007中国科协年会论文集(一)[C];2007年

5 赵峰;;微生物燃料电池的电子传递及电极反应研究[A];广东省科协资助学术会议总结材料[C];2010年

6 付玉彬;;海底微生物燃料电池研究和应用[A];广东省科协资助学术会议总结材料[C];2010年

7 孔晓英;李连华;李颖;杨改秀;孙永明;;葡萄糖浓度对微生物燃料电池产电性能的影响[A];广东省科协资助学术会议总结材料[C];2010年

8 袁勇;庄莉;周顺桂;;盘管式微生物燃料电池的构建及其应用[A];广东省科协资助学术会议总结材料[C];2010年

9 喻玉立;袁用波;胡忠;;产电菌的选育及其在微生物燃料电池中的应用[A];广东省科协资助学术会议总结材料[C];2010年

10 陈禧;王炜;彭香琴;刘宇波;幸毅明;;微生物燃料电池结构与材料研究进展[A];2013中国环境科学学会学术年会论文集(第八卷)[C];2013年

相关重要报纸文章 前10条

1 ;微生物燃料电池处理污水发电两不误[N];中国环境报;2005年

2 记者 符王润 通讯员 曾晓舵 李洁尉 刘静;微生物燃料电池有很大挖掘空间[N];广东科技报;2010年

3 萧潇;微生物燃料电池:处理污水发电两不误[N];中国煤炭报;2005年

4 记者 毛黎;微生物燃料电池技术又推进一步[N];科技日报;2006年

5 纪振宇;微生物燃料电池为汽车节能环保提供解决方案[N];中国高新技术产业导报;2008年

6 本报记者 赵亚平;虾兵蟹将派上新用场[N];科技日报;2007年

7 张芮;希腊从芝士副产品中回收能源[N];中国石化报;2010年

8 常丽君;高空“超级细菌”可成发电新能源[N];科技日报;2012年

9 编译 杨孝文;微生物机器人吃苍蝇发电[N];北京科技报;2006年

10 记者 陈勇;美科学家开发出微生物燃料电池[N];新华每日电讯;2005年

相关博士学位论文 前10条

1 黄杰勋;产电微生物菌种的筛选及其在微生物燃料电池中的应用研究[D];中国科学技术大学;2009年

2 陶琴琴;微生物燃料电池同步脱氮除磷及产电性能研究[D];华南理工大学;2015年

3 徐磊;微生物燃料电池PB/rGO阴极材料及导电膜自清洁性能研究[D];大连理工大学;2015年

4 臧国龙;基于微生物燃料电池的复杂废弃物处置及光电催化制氢[D];中国科学技术大学;2013年

5 代莹;银/铁—碳基复合体作为微生物燃料电池阴极的性能研究[D];黑龙江大学;2016年

6 龚小波;微生物燃料电池高效电极与界面设计强化产电特性研究[D];哈尔滨工业大学;2016年

7 孙哲;光催化型微生物燃料电池产电特性及对污染物去除研究[D];东华大学;2016年

8 程建萍;微生物燃料电池阴极的功能拓展及机理分析[D];合肥工业大学;2015年

9 孙彩玉;基于BES污水处理—产能研究及微生物群落结构解析[D];东北林业大学;2016年

10 杜月;生物阴极微生物燃料电池特性及其与光催化耦合模式的研究[D];哈尔滨工业大学;2015年

相关硕士学位论文 前10条

1 张鑫;复合微生物燃料电池的研究[D];天津大学;2007年

2 周秀秀;微生物燃料电池阴极催化剂双核酞菁钴的结构及性能优化[D];华南理工大学;2015年

3 黄丽巧;基于微生物燃料电池技术的同步除碳、硝化/反硝化研究[D];华南理工大学;2015年

4 印霞h,

本文编号:2492902


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2492902.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b3b40***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com