变压器振动法故障诊断技术的研究
[Abstract]:Power transformer is a kind of static electrical equipment, which is used to change a certain value of AC voltage into another or several kinds of voltage with the same frequency. It is the key equipment in the power system, and its safe and reliable operation is related to the safe operation of the whole power grid. In recent years, the method of fault diagnosis of transformer based on vibration signal has begun to take shape. In this paper, the feature quantity is further extracted by analyzing the vibration signal transmitted by sensor, and the working condition of transformer is evaluated according to the extracted feature quantity. A large number of experimental results show that when the transformer fails, the vibration signal is not in a stationary state, but in a non-stationary state. In this paper, wavelet analysis method is used to analyze the non-stationary signal, but there is a defect in the fault diagnosis method of transformer vibration signal based on wavelet analysis, that is, it has a prerequisite. It is considered that the coefficient of wavelet decomposition accords with Gaussian distribution, which is not the case in practice, and there is a compression characteristic of wavelet transform. Most of the energy only exists in a small part of wavelet coefficients, which is obviously different from the characteristics of Gaussian distribution. In this paper, the mechanism of transformer fault is described, the analysis method of wavelet transform is put forward, and the theoretical basic knowledge of wavelet transform is summarized. Then, the vibration model of transformer is established and the signal is divided into several appropriate fault types. In the fault diagnosis, the energy spectrum fault analysis method is used to diagnose the signal. Then the generalized Gaussian model in wavelet domain is established, and the signal is fitted according to the probability density function of the generalized Gaussian distribution. The parameters of the generalized Gaussian distribution of the wavelet coefficient are extracted as the characteristic quantity to carry on the fault diagnosis to the signal, and the signal is classified by the support vector machine. Then, when considering the correlation of wavelet coefficients, the energy spectrum and the hidden Markov model in wavelet domain are combined to diagnose the fault of the signal. Finally, wavelet transform and corresponding energy calculation are realized on VC, and fault signal diagnosis is realized on VC.
【学位授予单位】:哈尔滨工程大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM41
【参考文献】
相关期刊论文 前10条
1 刘敬东;;机械故障诊断的SL-ISOMAP算法及应用初探[J];河南科技;2014年01期
2 闫晨光;张保会;郝治国;晁光;王龙;付科源;梁栋;;电力变压器油箱内部故障压力特征建模及仿真[J];中国电机工程学报;2014年01期
3 王丰华;张君;江秀臣;;变压器振动特性测试平台的设计与实现[J];实验室研究与探索;2013年11期
4 尚海昆;苑津莎;王瑜;靳松;;平移不变小波迹消噪方法在局部放电检测中的应用[J];电工技术学报;2013年10期
5 苏峰;平殿发;简涛;;拖尾噪声中基于WVD-Hough变换的LFM信号检测算法[J];舰船电子工程;2013年10期
6 毕小玉;田慕琴;宋建成;吝伶艳;郑丽君;李传扬;;主通风机电动机绝缘状态监测及故障诊断方法研究[J];工矿自动化;2013年09期
7 马宏忠;耿志慧;陈楷;王春宁;李凯;李勇;;基于振动的电力变压器绕组变形故障诊断新方法[J];电力系统自动化;2013年08期
8 陶新民;张冬雪;郝思媛;付丹丹;;基于谱聚类欠取样的不均衡数据SVM分类算法[J];控制与决策;2012年12期
9 刘梦娜;彭发东;柯春俊;孟源源;;变压器绕组变形故障的诊断分析[J];广东电力;2012年11期
10 曹维时;张春庆;王金星;刘双喜;许兴镇;;离散小波变换和BP神经网络识别玉米种子纯度(英文)[J];农业工程学报;2012年S2期
相关博士学位论文 前1条
1 吴书有;基于振动信号分析方法的电力变压器状态监测与故障诊断研究[D];中国科学技术大学;2009年
相关硕士学位论文 前4条
1 邓龙君;高压开关柜实时监测系统研究[D];集美大学;2013年
2 陈静;基于独立分量分析和支持向量机方法的操作员功能状态分类[D];华东理工大学;2011年
3 徐志;基于振动法的变压器在线监测研究[D];重庆大学;2010年
4 刘欣;基于小波变换的电力变压器故障诊断系统的研究[D];华中科技大学;2006年
,本文编号:2509657
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2509657.html