模块化多电平变换器控制系统设计及实验研究
[Abstract]:From the point of view of sustainable development strategy, the new energy power generation technology, which is dominated by solar energy, wind energy and other renewable energy, has become a hot research topic. With the development of existing technology, flexible DC transmission technology based on voltage source modular multilevel converter has become an inevitable choice to solve the problem of distributed power supply connected to the grid. The control system is the brain and nerve of the whole flexible HVDC system, so this paper takes the control system of modular multilevel converter (MMC) as the research core, and studies its control strategy with experiments. Based on the existing examples of MMC flexible HVDC, this paper analyzes the research status of MMC control system, and summarizes the typical control system structure of MMC control technology. the control system of flexible HVDC mainly includes system level control, converter station level control and converter valve level control. Aiming at the typical half-bridge submodule MMC topology, the working principle of back-to-back MMC and its sub-modules, as well as the operation of four quadrants are analyzed, and its simplified equivalent model and MMC upper bridge arm small signal model are established to facilitate the design of subsequent control strategy. On the basis of the existing research on the capacitance voltage balance control method of the sub-module, this paper proposes a MMC comprehensive control strategy based on the bridge arm current direct control, and applies it to the back-to-back MMC system composed of rectifier side and inverter side. The rectifier side is responsible for DC bus voltage stability control, and the inverter side is responsible for grid-connected control. Taking the control block diagram of the current inner loop and the design of the regulator as an example, the design process of the MMC control system is introduced in detail, and a feedforward scheme of the active current is also proposed for the rectifier MMC, which increases the dynamic response speed of the active current and improves the rapidity and stability of the system. In order to carry out the research of MMC experiment, a set of three-phase back-to-back MMC experimental platform with four sub-modules is developed in this paper. The control system is composed of three levels of control: main controller, auxiliary controller and sub-module controller. The main controller adopts TI's latest dual-core chip F28M35, which integrates ARM and DSP. The M3 core is mainly used to realize the communication with the upper computer, and the working state information of MMC is sent to the upper computer for display in time, and the instructions of the upper computer are received at the same time. The C28 core is mainly used to realize the core control algorithm and communication with FPGA. FPGA, as an auxiliary controller, mainly realizes carrier phase shift and data conversion, generates the PWM signal of each sub-module, serially receives the capacitance voltage feedback value of the sub-module controller, and converts it into 16 bits of data for DSP call. In the debugging process of the experimental platform, this paper first uses PSIM simulation to verify the effectiveness of the MMC integrated control strategy; then uses this control strategy to debug the hardware-in-the-loop simulation system, and uses the hardware-in-the-loop simulation system that has been debugged to debug the control system; finally, the debugged control system is used to debug the strong electric main circuit, so that the whole experimental platform is debugged successfully. A series of experimental studies of modular multilevel converters can be carried out by using the whole experimental platform, which provides a good experimental platform for the research of control strategy. The experimental results show the practicability of the experimental platform and the effectiveness of the MMC integrated control strategy.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM46
【相似文献】
相关期刊论文 前10条
1 梅业伟;刘慧娟;邱瑞昌;程强;;基于多电平逆变器通用数字控制平台的研究[J];机械与电子;2009年04期
2 江友华;林学龙;曹以龙;龚幼民;;高压大功率变换器拓扑结构的演化及分析和比较[J];电源技术应用;2004年03期
3 宁静;贺昱曜;;多电平逆变器准最优脉宽调制方法[J];西北工业大学学报;2006年02期
4 陈阿莲;何湘宁;胡磊;;组合型多电平变换器拓扑的研究(英文)[J];中国电机工程学报;2006年14期
5 桂红云;姚文熙;吕征宇;;多电平变换器的拓扑结构和控制策略[J];电源技术应用;2004年08期
6 李永东;高跃;;多电平变换器PWM控制技术发展现状(续)[J];电气技术;2006年05期
7 王小峰;邓焰;何湘宁;;基于混和箝位技术的四桥臂多电平变换器的研究[J];中国电机工程学报;2007年13期
8 刘红良;李利娟;朱建林;;多电平矩阵变换器系统的数学模型[J];吉首大学学报(自然科学版);2007年04期
9 张艳莉;居荣;费万民;吕征宇;;混合二极管箝位多电平变换器的拓扑结构研究[J];电力自动化设备;2005年12期
10 陈阿莲;王玮誉;董圣英;张承慧;;光伏发电系统中的多电平变换技术[J];电力电子技术;2010年06期
相关会议论文 前5条
1 李承;石丹;郭勇;;基于单周控制的级联多电平变换器研究[A];武汉(南方九省)电工理论学会第22届学术年会、河南省电工技术学会年会论文集[C];2010年
2 蔚泉清;陈增禄;赵文武;;一种新型多电平跟踪控制方法研究[A];2008中国电工技术学会电力电子学会第十一届学术年会论文摘要集[C];2008年
3 陈世杰;王武斌;吕征宇;;开关功率放大器拓扑及控制方案选择[A];浙江省电源学会第九届学术年会论文集[C];2004年
4 王琛琛;李永东;高跃;;新型多电平拓扑及其仿真研究[A];2008中国电工技术学会电力电子学会第十一届学术年会论文摘要集[C];2008年
5 李永东;;高性能大容量交流电机调速节能技术——现状及展望[A];第九届全国电技术节能学术会议论文集[C];2007年
相关博士学位论文 前4条
1 韩金刚;基于不对称结构的新型多电平变换器研究[D];上海海事大学;2007年
2 陈权;电压型多电平变换器若干关键技术研究[D];合肥工业大学;2007年
3 杨晓峰;模块组合多电平变换器(MMC)研究[D];北京交通大学;2012年
4 荆鹏辉;高频隔离三电平双向DC/DC变换器的研究[D];中国矿业大学(北京);2013年
相关硕士学位论文 前10条
1 王晓鹏;模块组合多电平变换器控制系统研制[D];北京交通大学;2011年
2 熊焘;基于模块组合多电平变换器的高压直流输电系统研究[D];北京交通大学;2012年
3 常非;多电平变换器在同相供电中的应用研究[D];西南交通大学;2013年
4 牛得存;并联模块化多电平变换器控制方法研究[D];山东大学;2014年
5 孙浩;模块组合多电平变换器(MMC)的控制策略研究[D];北京交通大学;2010年
6 孙常鹏;模块化多电平变换器控制系统设计及实验研究[D];山东大学;2014年
7 廖其艳;基于MMC的轻型直流输电系统控制策略研究[D];安徽理工大学;2012年
8 王凤荣;模块化多电平变换器建模与模拟仿真技术研究[D];山东大学;2014年
9 范文宝;基于模块组合多电平变换器(MMC)的STATCOM控制策略研究[D];北京交通大学;2011年
10 李帅;基于MMC拓扑的DSTAT-COM控制策略研究[D];太原科技大学;2014年
,本文编号:2509619
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2509619.html