二氧化硅光波导干涉微结构器件传感研究
发布时间:2018-02-11 09:11
本文关键词: 光波导 深紫外激光加工 高温 双参数测 出处:《电子科技大学》2016年硕士论文 论文类型:学位论文
【摘要】:近年来激光自动化制造技术的快速发展为人们研制新一代光学传感器提供了新的技术选项。发展基于激光加工工艺在光学波导结构上制作传感器件的新技术是未来光学传感领域的一个重要的发展方向。本文利用电磁理论研究了在二氧化硅材料的波导结构上制作的微干涉结构的设计工作,使用有限元分析方法和传输矩阵理论分别给出了相关干涉结构传感特性的数值计算结果,利用深紫外激光技术制作相关传感器并研究了它们的传感特性。主要研究内容如下:1.从电磁理论入手,分别在理论上研究了条形光波导和光纤这两种光波导结构的电磁场传输特性;使用有限元计算方法,计算出了三层对称平板光波导上的珐珀干涉仪的电场分布情况和反射光谱图。利用薄膜光学的传输矩阵理论计算出了光纤光栅结构的反射光谱图。2.采用157nm深紫外激光加工工艺,并采用该工艺在商用光学分路器上制作了基于迈克尔逊干涉结构的折射率传感器。首先从理论上给出了这种传感器的传感特性,接着给出了传感器反射光谱图以及传感特性数值仿真的结果。再从实验的角度对传感器的传感特性进行了验证。结果表明采用157nm激光加工工艺可以快速制作出性能良好的光学器件。3.为在高温环境下精确测量外界物理量,结合157nm与248nm激光加工工艺提出了基于光纤珐珀腔与再生光栅空间复合结构的光学传感器。首先从理论上分别分析了光纤珐珀干涉仪和光纤光栅集成结构的传感原理,介绍了使用开放型珐珀腔测量空气压力的方法,与传统光纤珐珀非膜片压力传感器相比,其灵敏度提高了近一百倍。并且这种传感器的压力温度交叉敏感系数非常弱,能够有效的剔除环境温度对气体压强测量结果的影响。运用数值计算给出了这种结构传感器的反射光谱和应变/温度或者压力/温度双物理参量测量的传感特性计算结果。分别在实验上验证了传感器从室温到高温环境(超过600℃)中的温度响应,压力响应以及应变响应等传感特性。本论文从数值计算和实验测试两个角度分析了光波导结构上微干涉仪的光学性能,基本上实现了157nm深紫外激光在光学波导结构中微干涉结构的快速制作。
[Abstract]:In recent years, the rapid development of laser automatic manufacturing technology provides a new technical option for the development of a new generation of optical sensors. In this paper, we use electromagnetic theory to study the design of micro-interference structure on the waveguide structure of silicon dioxide. Using the finite element analysis method and the transfer matrix theory, the numerical calculation results of the sensing characteristics of the related interference structures are presented, respectively. The related sensors are fabricated by using deep ultraviolet laser technology and their sensing characteristics are studied. The main research contents are as follows: 1. Starting with electromagnetic theory, The electromagnetic field propagation characteristics of two optical waveguide structures, stripe waveguide and optical fiber, are studied theoretically, and the finite element method is used. The electric field distribution and reflectance spectrum of Fabry-Perot interferometer on a three-layer symmetrical planar waveguide are calculated. The reflection spectrum of fiber grating structure is calculated by using the transfer matrix theory of thin film optics. The 157nm deep ultraviolet laser processing technology is used. The refractive index sensor based on Michelson interference structure is fabricated on the commercial optical shunt by this process. The sensing characteristics of the sensor are given theoretically. Then, the reflection spectrum of the sensor and the numerical simulation results of the sensing characteristics are given, and the sensing characteristics of the sensor are verified from the point of view of experiment. The results show that the 157nm laser processing technology can be used to produce the sensor property quickly. Good optical device .3.In order to accurately measure the external physical quantity in the high temperature environment, Combined with 157nm and 248nm laser processing technology, an optical sensor based on fiber Fabry-Perot cavity and space composite structure of regenerated grating is proposed. Firstly, the sensing principle of the integrated structure of fiber Fabry-Perot interferometer and fiber grating is analyzed theoretically. The method of measuring air pressure with open Fabry-Perot cavity is introduced. Compared with the conventional fiber-optic non-diaphragm pressure sensor, the sensitivity of the sensor is increased by nearly 100 times, and the cross-sensitivity coefficient of pressure and temperature of this kind of sensor is very weak. The effect of ambient temperature on the gas pressure measurement results can be eliminated effectively. The sensing characteristics of the sensing spectrum of the structure sensor and the measurement of strain / temperature or pressure / temperature double physical parameters are given by numerical calculation. The temperature response of the sensor from room temperature to high temperature (above 600 鈩,
本文编号:1502700
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1502700.html