微流控芯片内微筛结构的制备
本文关键词: 湿法刻蚀 飞秒激光 微加工 微筛结构 出处:《吉林大学》2015年硕士论文 论文类型:学位论文
【摘要】:微型全分析系统(Micro TotalAnalysis Systems, μTAS)又称微全分析,是使化学分析设备微型化的一种系统,它将化学分析设备高度集成化,是近二十年来逐渐发展起来的一种新型的微型生化分析系统,又可以称其为芯片实验室(LabOn A Chip,LOC)或微流控芯片(Microfluidic Chips)。LOC目前已经在多个领域应用,尤其是化学领域和生物领域,例如基因和蛋白分析、新药开发、医疗检查、环境监测;以及微光学元件,例如微透镜、微光栅、波导和微光学传感器制作等;用于原位分析反应物,例如微流控芯片原位SERS检测。微流控芯片成本低廉、样品消耗量少、环境污染小、携带方便等诸多优点,会使其在未来被越来越多人熟知,也将具有更广泛的应用。 随着微芯片系统尺寸不断地缩小,有些甚至达到微米级别,传统的制备微芯片的方法,如电子束刻蚀、湿法刻蚀等,不能满足人们日益增长的需求。从1960年第一台红宝石激光器的发明到如今已有五十多年过去,激光的应用已逐步渗透到科研领域、工业制造、医学治疗、国防等生产生活中。微加工技术是微电子行业的强力支撑,被广泛应用在微机电系统、微光电系统、微芯片中,飞秒激光直写空间分辨率为几十纳米,这么高的得分辨率超过了光学衍射极限,,因此飞秒激光微纳加工技术更是这种强力支撑中的生力军,随着微全分析系统的不断发展,微流控芯片中的飞秒激光加工更是吸引越来越多的关注。文章中解释了飞秒激光双光子吸收的原理,并且介绍了微加工系统的搭建方法以及搭建过程中光路需要满足的某些条件。 本文内容主要包括两个方面。 1.传统的湿法腐蚀制备玻璃通道芯片。利用氢氟酸与二氧化硅发生化学反应腐蚀玻璃基底,通过调整腐蚀液的配比来控制腐蚀速率,从而得到形貌良好的通道结构。利用得到的微通道,以及聚苯乙烯和钛酸丁酯的特性,可以获得通道内的微筛结构,可以用于光催化反应中。 2.利用飞秒激光加工的方法制备微通道内的微筛结构。本文提出了双次“曝光”一次显影的实验方法,来制备全SU-8通道内微筛结构。双次“曝光”包括紫外光刻曝光以及飞秒激光直写加工曝光;一次显影是指在曝光后对未显露的通道和加工结构进行统一显影。实验想法来自于2010年在LOC杂志上的一篇文章。SU-8材料的通道能够避免激光加工时,因通道壁与通道内填充物折射率不同而对结构造成影响。
[Abstract]:Micro TotalAnalysis Systems (渭 TAS), also known as micro total analysis, is a system for miniaturization of chemical analysis equipment. It highly integrates chemical analysis equipment and is a new type of micro biochemical analysis system developed gradually in the past twenty years. It can also be called LabOn A Chiploc or Microfluidic Chips).LOC, which has been applied in many fields, especially in chemical and biological fields, such as gene and protein analysis, new drug development, medical examination and environmental monitoring. And the fabrication of microoptical elements, such as microlenses, microgratings, waveguides and microoptical sensors, for in-situ analysis of reactants, such as in-situ SERS detection on microfluidic chips. Many advantages, such as easy to carry, will make it more and more familiar in the future, and will also have a wider application. As the size of the microchip system continues to shrink, some even reach the micron level. Traditional methods of fabricating microchips, such as electron beam etching, wet etching and so on, It has been more than 50 years since the invention of the first ruby laser in 1960, and the application of laser has gradually penetrated into the field of scientific research, industrial manufacture, medical treatment, Micromachining technology is a strong support in the microelectronics industry, and is widely used in micro electromechanical systems, micro optoelectronic systems, microchips, femtosecond laser direct writing spatial resolution of tens of nanometers, Such a high resolution exceeds the limit of optical diffraction, so femtosecond laser micro-nano processing technology is a new force in this kind of strong support, with the continuous development of micro-total analysis system. Femtosecond laser processing in microfluidic chips has attracted more and more attention. The principle of femtosecond laser two-photon absorption is explained in this paper. The construction method of micro-machining system and some conditions of optical path in the process of building are introduced. This paper mainly includes two aspects. 1. Glass channel chips were prepared by traditional wet etching. The glass substrate was corroded by chemical reaction between hydrofluoric acid and silica, and the corrosion rate was controlled by adjusting the proportion of corrosion solution. Using the obtained microchannels and the properties of polystyrene and butyl titanate, the microsieve structures in the channels can be obtained, which can be used in photocatalytic reactions. 2. The microscreen structure in the microchannel was fabricated by femtosecond laser processing. Double "exposures" include UV lithography and femtosecond laser direct writing. A development is a unified development of unexposed channels and processing structures after exposure. The experimental idea was derived from a 2010 article in LOC magazine in which the channels of the SU-8 material were able to avoid laser processing. The structure is affected by the different refractive index of the channel wall and the filling material in the channel.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN492
【参考文献】
相关期刊论文 前10条
1 蒋文波;胡松;;传统光学光刻的极限及下一代光刻技术[J];微纳电子技术;2008年06期
2 王立鼎,刘冲;微机电系统科学与技术发展趋势[J];大连理工大学学报;2000年05期
3 方肇伦;微流控分析芯片发展与展望[J];大学化学;2001年02期
4 谢文;刘建国;李平;;一种新型紫外正型光刻胶成膜树脂的制备及光刻性能研究[J];影像科学与光化学;2010年01期
5 张锦文;杨化冰;蒋巍;王龙;;Pyrex7740玻璃通孔湿法腐蚀技术研究[J];功能材料与器件学报;2011年06期
6 姜军,周芳,曾俊英,杨铁锋;光刻技术的现状和发展[J];红外技术;2002年06期
7 黄峰,楼祺洪;自锁模飞秒钛宝石激光技术进展[J];激光与光电子学进展;1999年08期
8 王亚珍,朱文坚;微机电系统(MEMS)技术及发展趋势[J];机械设计与研究;2004年01期
9 郑金红;;光刻胶的发展及应用[J];精细与专用化学品;2006年16期
10 范崇政,肖建平,丁延伟;纳米TiO_2的制备与光催化反应研究进展[J];科学通报;2001年04期
相关博士学位论文 前2条
1 魏慧斌;微流控芯片—质谱联用技术用于细胞代谢及相互作用研究[D];清华大学;2011年
2 宋永欣;微流控芯片上单细胞生物电子检测和介电操控技术研究[D];大连海事大学;2012年
本文编号:1519189
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1519189.html