PbSe量子点光纤的制备及光谱测量
发布时间:2018-04-17 13:57
本文选题:PbSe量子点 + PL光谱 ; 参考:《浙江工业大学》2015年硕士论文
【摘要】:近年来,半导体纳米晶体量子点的研究迅速发展,通过制备不同尺寸和类型的量子点,可以得到不同波长和带宽的吸收和发射谱。研究表明,IV-VI族的中的PbSe量子点的吸收-发射谱覆盖了极宽波带,包括近红外通信的1550nm波段。由于具有波长可调节的特性,PbSe量子点在红外光纤通信器件和激光器件的应用成为了新的研究热点。对于量子点光纤的研究仍有相当多的空白。本文工作如下:(1)利用正己烷、PbSe量子点和紫外固化胶(UV胶)的沸点差异,采用旋转蒸发法,制备了UV胶/PbSe量子点胶体,并稀释得到不同浓度的量子点胶体。通过透射电镜(TEM)、分光光度仪和荧光光谱仪等仪器对PbSe量子点胶体进行了测量和分析。(2)利用压力差,将不同浓度的量子点胶体灌装于孔径为130?m的空芯光纤内,并采用紫外固化灯对其固化。进而通过对量子点掺杂光纤(QDF)接口封装、端面抛光等处理后,制备出量子点分布均匀、不同长度和不同浓度的固态纤芯QDF。(3)采用光功率计和近红外光谱仪分别测量了980nm的泵浦光强度和光致荧光光谱(PL)强度,分析了泵浦光强和荧光光强与QDF的掺杂浓度和光纤长度的关系。结果表明:直径d=4.4 nm的PbSe QDF,在980 nm波长光的激励下,其吸收系数与掺杂浓度呈线性关系,量子点在UV胶中的吸收截面随浓度近似成e指数减小;PL峰值强度随掺杂浓度和光纤长度变化,找到了最大峰值强度以及对应的掺杂浓度和光纤长度,在浓度为0.4mg.mL-1、QDF长度7 cm时产生了最大光强。通过本文研究表明,制备以UV胶为本底的PbSe QDF,是研发QDF器件的有效途径。
[Abstract]:In recent years, the research of semiconductor nanocrystal quantum dots to the rapid development of preparation of quantum dots of different sizes and types through the system, we can get different wavelength and bandwidth of absorption and emission spectra. The results show that PbSe IV-VI QDs in the absorption and emission spectrum of coverage zone is very wide, including a 1550nm band near infrared communication. Due to the nature of a wavelength adjustable, PbSe quantum dots has become a new hotspot in the application of infrared optical communication devices and laser devices. There are still quite a lot of vacancy for the study of quantum dots fiber. The main works are as follows: (1) using hexane, PbSe QDs and UV (ultraviolet curable adhesive) the boiling point difference, rotary evaporation, UV colloidal /PbSe quantum dots were prepared and diluted by different concentrations of colloidal quantum dots. By transmission electron microscopy (TEM), dispensing spectrophotometer and fluorescence spectrometer instrument of quantum PbSe The body was measured and analyzed. (2) using the pressure difference, the quantum dots of different concentrations of colloidal filling in the pore size of 130? M hollow fiber, and the UV curing light on the curing. And then based on quantum dot doped fiber (QDF) interface package, surface polishing processing, system preparation of quantum dot distribution, different length and different concentrations of solid core QDF. (3) and near infrared spectrometer were used to measure the intensity of pump light 980nm and photoluminescence spectra of the optical power (PL) strength, analyzes the relationship between the doping concentration and the fiber length and pump intensity and the fluorescence intensity of QDF. The results show that the diameter of d=4.4 nm PbSe QDF, at 980 nm under the excitation wavelength, the absorption coefficient is linear with the concentration of quantum dots in the UV absorption cross section with the concentration of approximately e index decreased; PL peak intensity with the doping concentration and the fiber length were found. The maximum peak intensity and the corresponding doping concentration and the fiber length, the concentration is 0.4mg.mL-1, the length of QDF produced a maximum intensity at 7 cm. This study shows that, in the preparation of UV base of PbSe QDF, is an effective way to develop QDF devices.
【学位授予单位】:浙江工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN253
【相似文献】
相关期刊论文 前10条
1 雷达;沈永涛;冯奕钰;封伟;;量子点能带宽调控研究新进展[J];中国科学:技术科学;2012年05期
2 宋凯;;量子点闪光的风采[J];百科知识;2010年06期
3 袁晓利,施毅,杨红官,卜惠明,吴军,赵波,张荣,郑有p,
本文编号:1763884
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1763884.html