基于激光跟踪仪的大口径非球面镜在位检测技术研究
本文选题:检测 + 激光跟踪仪 ; 参考:《中国科学院长春光学精密机械与物理研究所》2017年硕士论文
【摘要】:大口径非球面镜以其优异的光学特性,在天文观测、空间探测、目标识别等领域的应用越来越广泛。在大口径非球面镜制造的研磨阶段,由于粗糙度值较大,通常采用轮廓测量的方式进行面形检测;传统的三坐标轮廓测量仪受测量范围的限制,很难满足大口径非球面镜的检测需求,并且检测过程中需要来回搬运被测件,操作困难。激光跟踪仪具有测量范围大、响应速度快、检测范围广、并能够提供在位测量等诸多优点,在大口径非球面镜轮廓检测中具有明显的优势。本论文对基于激光跟踪仪的大口径非球面镜研磨阶段面形检测技术展开研究,分析测量系统的误差分布,针对测角误差,提出误差补偿方案,提高系统检测精度;开发设计大口径非球面镜立式自动检测系统,提高检测效率,降低检测成本,实现大口径非球面镜的快速高精度面形检测,弥补现有检测方式在研磨阶段检测的不足,并对进一步的加工提供指导意见。论文的主要研究工作从以下几个方面展开:1分析了激光跟踪仪的结构及工作原理,并分析了其对大口径非球面镜检测的原理,讨论测量误差对面形检测结果的影响。并对激光跟踪仪测量系统的测距误差,测角误差,几何误差,靶球误差及环境误差等主要误差进行了分析。2针对激光跟踪仪在大口径非球面镜检测中对测量精度影响较大的角度误差进行分析,提出一种通过标定测角误差信息,利用S多项式拟合,以矫正测角误差的方法。对标定实验中的采样方案进行讨论,根据不同频段的角度误差,提出了不同的采样方案,满足不同的精度需求。并讨论分析了标定实验中的采样位置误差和随机误差对测量结果的影响。搭建检测平台,并对激光跟踪仪角度误差进行标定,得到角度误差分布。3研究了激光跟踪仪对大口径非球面镜研磨阶段面形自动检测技术。设计研制了二维平移机构,并对其作用面积进行最优化求解;开发了自动测量控制程序,实现了激光跟踪仪对大口径非球面镜的自动面形在位检测。并对4m量级反射镜的检测结果进行角度误差的矫正,并于非接触式探头测量结果进行比较,具有较好的一致性,RMS偏差小于10%。
[Abstract]:Because of its excellent optical properties, large aperture non-spherical mirror has been widely used in astronomical observation, space detection, target recognition and so on. In the grinding stage of large-caliber non-spherical mirror, due to the large roughness value, the profile measurement is usually used to detect the surface shape, and the traditional 3D profilometer is limited by the measuring range. It is difficult to meet the test requirement of large aperture non-spherical mirror, and it is difficult to move the tested parts back and forth in the process of detection. Laser tracker has many advantages, such as large measurement range, fast response speed, wide detection range, and can provide in-situ measurement. It has obvious advantages in large aperture non-spherical mirror profile detection. In this paper, the measurement technology of large aperture non-spherical mirror grinding stage based on laser tracker is studied, the error distribution of measuring system is analyzed, and the scheme of error compensation is put forward to improve the accuracy of the system. This paper develops and designs a vertical automatic testing system for large aperture non-spherical mirror, which can improve the detection efficiency, reduce the detection cost, realize the rapid and high precision surface shape detection of the large aperture non-spherical mirror, and make up for the shortcomings of the existing testing methods in the grinding stage. And provide guidance for further processing. The main research work of this paper is to analyze the structure and working principle of the laser tracker from the following aspects: 1. The principle of the laser tracker is analyzed, and the influence of the measurement error on the measurement result is discussed. The ranging error, angle measuring error and geometric error of the laser tracker measuring system are also discussed. The main errors, such as target ball error and environment error, are analyzed. 2. Aiming at the angle error of laser tracker which has a great influence on the measurement accuracy in the detection of large aperture non-spherical mirror, a kind of angle measurement error information through calibration is put forward. S-polynomial fitting is used to correct the angle measurement error. The sampling scheme in calibration experiment is discussed. According to the angle error of different frequency bands, different sampling schemes are proposed to meet different precision requirements. The effects of sampling position error and random error on the measurement results are discussed and analyzed. The angle error of laser tracker is calibrated, and the angle error distribution of laser tracker is obtained. 3. The automatic testing technology of laser tracker for the grinding stage of large caliber non-spherical mirror is studied. The two-dimensional translation mechanism is designed and developed, and its working area is solved optimally, and the automatic measurement control program is developed to realize the automatic in-situ detection of the large aperture non-spherical mirror by laser tracker. The angle error of the 4 m mirror is corrected and compared with that of the non-contact probe. The RMS deviation is less than 10.
【学位授予单位】:中国科学院长春光学精密机械与物理研究所
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH744.5
【参考文献】
相关期刊论文 前10条
1 王孝坤;;利用三坐标测量仪拼接检测大口径非球面面形[J];红外与激光工程;2014年10期
2 张峰;;纳米级面形精度光学平面镜加工[J];中国光学;2014年04期
3 薛栋林;;大口径标准球面镜组研制与应用[J];中国激光;2014年06期
4 师途;杨甬英;张磊;刘东;;非球面光学元件的面形检测技术[J];中国光学;2014年01期
5 王孝坤;;大口径碳化硅反射镜面形子孔径拼接干涉检测[J];激光与光电子学进展;2013年05期
6 李森;闫国锋;刘宁;;激光跟踪仪坐标测量精度分析[J];北京测绘;2013年02期
7 张志宇;李锐钢;郑立功;张学军;;离轴非球面SiC反射镜的精密铣磨加工技术[J];机械工程学报;2013年17期
8 王孝坤;;激光跟踪仪检验非球面面形的方法[J];光子学报;2012年04期
9 李杰;伍凡;吴时彬;匡龙;林常青;;使用激光跟踪仪测量研磨阶段离轴非球面面形[J];光学学报;2012年01期
10 王小鹏;朱日宏;王雷;许荣国;;数字刀口仪定量检验非球面光学元件面形[J];光学学报;2011年01期
相关博士学位论文 前3条
1 罗霄;采用平转动应力盘技术加工超大口径非球面的研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2011年
2 贾立德;光学非球面坐标测量关键技术研究[D];国防科学技术大学;2008年
3 周维虎;大尺寸空间坐标测量系统精度理论若干问题的研究[D];合肥工业大学;2000年
相关硕士学位论文 前6条
1 黄瑛;基于夏克—哈特曼波前传感的膜基反射镜面形检测[D];苏州大学;2014年
2 李万红;激光跟踪仪高精度测角误差补偿技术研究[D];合肥工业大学;2014年
3 王建明;三坐标轮廓测量仪检测非球面研究[D];苏州大学;2013年
4 柯瑞;空间反射镜镜片及其支撑结构分析与设计[D];哈尔滨工业大学;2010年
5 焦悦;二次曲面镜面面形检测技术研究[D];长春理工大学;2010年
6 王振桓;旋转变压器/感应同步器/圆光栅组合测角系统研究[D];哈尔滨工业大学;2008年
,本文编号:1880161
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1880161.html