色散补偿光子晶体光纤的设计及特性分析
发布时间:2018-05-20 01:20
本文选题:光子晶体光纤 + 色散 ; 参考:《北京邮电大学》2015年硕士论文
【摘要】:光子晶体光纤(Photonic Crystal Fiber, PCF)因结构灵活可调而拥有普通光纤所不具备的色散特性,利用其截面折射率分布的改变可以实现满足色散补偿光纤的大折射率调制。基于PCF的色散补偿光纤以其优异的色散特性是目前PCF的一个重要研究领域。 论文从理论上对双芯PCF的色散补偿原理、大负色散大模场设计以及在高速通信系统中的应用进行了研究。 提出了一种外纤芯由高折射率介质组成的双芯PCF,该结构在耦合波长1.573μm处具有-6700ps/(nm·km)的大负色散,利用此光纤进行色散补偿将大幅缩减线路中所需光纤长度及引入的损耗。 利用光纤中孔间距、孔径、介质折射率等不同参量的改变对色散特性产生的具体影响的规律总结,设计了一种耦合波长1550nm处有效模场面积36.7gm2、色散系数-1800ps/(nm·km)的大负色散大模场双芯PCF,这对有效抑制线路中的非线性效应具有重要作用。 论文还通过在光纤外纤芯注入一种折射率随温度调节而改变的聚合物介质实现了动态色散补偿。当聚合物折射率从1.4185增加到1.4190时,色散曲线相位匹配波长从1.585μm移动至1.560μm,整个过程中所有曲线的色散峰值基本维持不变且所有色散系数均在-100至-800ps/(nm·km)之间,同时,各曲线还将C波段涵盖并在此带宽内展现了很好的色散平坦特型。
[Abstract]:Photonic Crystal Fiber, PCF) has dispersion characteristics that ordinary fiber does not have because of its flexible and adjustable structure. The large refractive index modulation can be realized by changing the refractive index distribution of photonic crystal fiber. Dispersion compensation fiber based on PCF is an important research field of PCF because of its excellent dispersion characteristics. In this paper, the dispersion compensation principle of dual-core PCF, the design of large negative dispersion and large mode field and its application in high-speed communication system are studied theoretically. In this paper, a dual-core PCF with high refractive index medium is proposed. The structure has a negative dispersion of -6700ps/ NM at the coupling wavelength of 1.573 渭 m. Using the fiber to compensate the dispersion will greatly reduce the length of the fiber and the introduced loss in the circuit. In this paper, we summarize the influence of different parameters, such as hole spacing, aperture and refractive index of the medium, on the dispersion characteristics. An effective mode field area of 36.7m-2 and dispersion coefficient of -1800ps-1 nm km at coupled wavelength 1550nm is designed, which plays an important role in suppressing the nonlinear effect in the circuit. The dynamic dispersion compensation is realized by injecting a polymer medium whose refractive index changes with temperature. When the refractive index of the polymer increases from 1.4185 to 1.4190, the phase matching wavelength of the dispersion curve moves from 1.585 渭 m to 1.560 渭 m, and the dispersion peak value of all the curves remains basically unchanged and all dispersion coefficients range from -100 to -800 ps路 r ~ (-1) nm during the whole process, and at the same time, the phase matching wavelength of the dispersion curve moves from 1.585 渭 m to 1.560 渭 m. The curves also cover the C band and show a good dispersion flat feature in this bandwidth.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN253
【参考文献】
相关期刊论文 前2条
1 李岩;章锦;于晋龙;张以谟;井文才;周革;贾大功;;一种40Gbit/s光纤通信系统中的动态色度色散补偿技术[J];光电子·激光;2006年10期
2 王锐;张国平;陈伟;;色散补偿技术的最新进展[J];光通信研究;2008年06期
相关博士学位论文 前4条
1 苑金辉;光子晶体光纤特性及其应用的研究[D];北京邮电大学;2011年
2 李岩;高速光纤通信系统中动态色度色散补偿的理论和实验研究[D];天津大学;2007年
3 杨四刚;光子晶体光纤色散与非线性特性的研究[D];清华大学;2007年
4 张智华;光子晶体光纤双芯耦合及传感机理研究[D];南京理工大学;2009年
,本文编号:1912551
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1912551.html