当前位置:主页 > 科技论文 > 电子信息论文 >

目标特征谱线选取对猪肉中Cr元素LIBS检测精度比较

发布时间:2018-08-01 18:25
【摘要】:结合激光诱导击穿光谱和线性回归对猪肉中Cr元素进行定量分析,比较了Cr特征谱线单变量分析与多变量分析对猪肉中Cr元素检测精度的影响。先采用特征谱线Cr I425.43nm进行单变量分析,得到Cr浓度与LIBS强度的线性相关系数为0.9434;再利用Cr的三特征谱线Cr I425.43nm,Cr I427.48nm,Cr I428.97nm进行多变量分析,研究了Cr元素预测质量分数与实际质量分数之间的线性相关性。结果显示,单变量分析与多变量分析的线性相关性分别为0.9749和0.9769,定标集平均预测相对误差分别为4.8%和4.2%,验证集AREP分别为5.3%和3.3%。结果表明,选取目标元素Cr的单特征谱线与多特征谱线均能对样品Cr含量进行有效预测,多变量分析能在一定程度上提高Cr元素含量预测的准确性但与单变量比较差异性不大,且采用单一最灵敏线定量分析更简便可行。
[Abstract]:Combined with laser induced breakdown spectroscopy and linear regression, the quantitative analysis of Cr in pork was carried out, and the effects of single variable analysis and multivariate analysis on the detection accuracy of Cr in pork were compared. The linear correlation coefficient between Cr concentration and LIBS strength is 0.9434 by using characteristic spectral line Cr I425.43nm, and then multivariate analysis is carried out by using Cr I 425.43 nm ~ (-1) Cr I _ (427.48) nm ~ (m) I428.97nm, and Cr I _ (425.43) nm ~ (m) ~ (-1) Cr I428.97nm. The linear correlation between the predicted mass fraction of Cr element and the actual mass fraction was studied. The results show that the linear correlation between univariate analysis and multivariate analysis is 0.9749 and 0.9769, the average relative error of calibration set is 4.8% and 4.2%, and the AREP of verification set is 5.3% and 3.3%, respectively. The results show that both single and multiple characteristic lines of the target element Cr can effectively predict the Cr content of the sample. Multivariate analysis can improve the accuracy of the prediction of Cr content to some extent, but there is little difference compared with the single variable. And the single most sensitive line quantitative analysis is more convenient and feasible.
【作者单位】: 江西农业大学工学院;江西省高校生物光电及应用重点实验室;江西农业大学生物科学与工程学院;
【分类号】:TN249


本文编号:2158453

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2158453.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户62bbf***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com