基于集合Kalman滤波的同化策略研究
[Abstract]:In recent years, the impact of climate change on human survival has become increasingly prominent. In order to enhance the monitoring and prediction of land, atmosphere and ocean, the Global Earth observation system (GEO) Program (GEOSS) and the Global Environment and Safety Monitoring Program (GMES) have been put forward one after another. New mathematical research results have been introduced into the data assimilation algorithm, which indicates that the data assimilation algorithm, which is the key bridge between observation data and model simulation prediction, has been developed rapidly. The data assimilation method based on set has been paid more and more attention in recent years, and has been gradually tested to replace the variable classification method in the operational atmospheric data assimilation system. The ensemble Kalman filtering method is highly dependent on the size of the set. When the number of sets is small, problems such as under-sampling, underestimation of covariance, filtering divergence and long distance false correlation will lead to its suboptimal filtering. The localization technique can effectively improve the related problems caused by the small set number. On the basis of strong nonlinear Lorenz-96 model, this paper studies the difference in the effect of local processing with or without localization, and discusses the superiority and inferiority of localization under the condition of small set number, and puts forward a method to judge the effect of data assimilation based on power spectral density (PSD). The main work of this paper is summarized as follows: (1) under the finite set number, the assimilation effect can be evaluated by using Kalman gain value and PSD, combined with localization technique. A more efficient assimilation algorithm can be obtained. (2) Localization can not only eliminate the false correlation of background field error covariance matrix. It can also increase the rank of background field error covariance matrix. (3) Covariance localization method is robust in updating set mean and set perturbation. The results are helpful to the precision analysis and estimation of background field error covariance. In this paper, a series of numerical experiments have been carried out on the CL and LA localization methods, and the effects of different observation errors and the number of sets on the assimilation effect have been observed. It is concluded that the idea of local analysis can effectively solve the problem of false correlation and provide a valuable reference for realizing the business of data assimilation.
【学位授予单位】:西北师范大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN713
【相似文献】
相关期刊论文 前10条
1 李洪波;杨军锋;;自适应Kalman滤波在多传感器数据融合中应用[J];国外电子测量技术;2006年06期
2 井敏英;;基于Kalman滤波的盲多用户检测算法[J];信息通信;2009年04期
3 向西西;黄宏光;李予东;;基于Kalman算法的网络安全态势预测方法[J];计算机仿真;2010年12期
4 刘雷雷;臧洌;邱相存;;基于Kalman算法的网络安全态势预测[J];计算机与数字工程;2014年01期
5 尚晓星;李俊霞;;基于不敏Kalman滤波的多传感器数据融合算法[J];河南师范大学学报(自然科学版);2011年04期
6 李毅;陆百川;李雪;;基于多尺度Kalman滤波的多传感器数据融合[J];重庆交通大学学报(自然科学版);2012年02期
7 于华楠;康健;;改进的基于Kalman滤波的盲多用户检测算法[J];吉林大学学报(工学版);2006年S2期
8 王继平;孙华燕;章喜;;基于Kalman滤波的红外弱小目标检测前跟踪算法[J];装备学院学报;2012年02期
9 刘洲洲;;基于Kalman滤波的多传感器信息融合研究[J];电子设计工程;2013年11期
10 严勇;黄席樾;刘爱君;;Kalman滤波在运动图像背景提取及更新中的应用[J];自动化与仪器仪表;2006年02期
相关会议论文 前6条
1 石莹;孟华;邓自立;;多传感器信息融合稳态Kalman跟踪滤波器[A];2006中国控制与决策学术年会论文集[C];2006年
2 田行伟;石莹;;带相关噪声的非方广义系统降阶Kalman递推滤波器[A];中国自动化学会控制理论专业委员会A卷[C];2011年
3 宋会杰;屈俐俐;;自适应Kalman滤波在钟差数据处理中的应用[A];第三届中国卫星导航学术年会电子文集——S04原子钟技术与时频系统[C];2012年
4 何红丽;杨廷梧;任朴舟;;协方差调节的KALMAN辨识算法在航迹处理中的应用[A];大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集[C];2007年
5 李变;李海波;高玉平;胡永辉;;原子时的Kalman算法[A];2009全国时间频率学术会议论文集[C];2009年
6 邓自立;李春波;;自校正分布式信息融合Kalman平滑器[A];2006中国控制与决策学术年会论文集[C];2006年
相关硕士学位论文 前10条
1 黄智慧;基于集合Kalman滤波的同化策略研究[D];西北师范大学;2015年
2 李小宁;基于Kalman滤波—加权因子的多传感器数据融合方法研究[D];电子科技大学;2005年
3 梁佐江;基于Kalman滤波方法的多传感器信息融合滤波器[D];黑龙江大学;2005年
4 王欣;基于Kalman滤波方法的多传感器信息融合最优白噪声反卷积滤波器[D];黑龙江大学;2005年
5 郭静雯;Kalman滤波在中国股市及货币供应干预分析中的应用[D];广州大学;2007年
6 潘家宝;时空Kalman滤波及其在变形监测数据处理中的应用[D];中南大学;2014年
7 王好谦;基于Kalman滤波的白噪声估计理论及其在状态估计和反卷积中的应用[D];黑龙江大学;2002年
8 马东鸽;基于优化Kalman滤波的IRFPA非均匀性校正算法研究[D];重庆邮电大学;2012年
9 李闯;带不同局部动态模型的时变系统Kalman融合器及其应用[D];黑龙江大学;2007年
10 黄铮;一般多传感器Kalman滤波融合中的观测数据压缩[D];四川大学;2003年
,本文编号:2263056
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2263056.html