0.5mm毛细管内气-液Taylor流动换热数值研究
本文选题:Taylor流 + 微通道 ; 参考:《化工学报》2016年S1期
【摘要】:采用移动计算域方法研究0.5mm毛细管内充分发展的气液Taylor流动换热特性,分析了Taylor气泡的形状、压降与换热特性。结果表明,随着入口Reynolds数Re的增大,气泡尾部的不稳定区域增大,液膜厚度逐渐增大,气泡长度变长;随着气泡体积分数ξ_g的增大,气泡形状基本不变而长度逐渐增大。阻力因子f随Re、ξg增大而降低,两相阻力系数高于单相的情况。平均Nusselt数Nu_(tp)随Re增大而增大,增大趋势逐渐降低;随ξg增大而线性降低。Taylor流的Nu_(tp)为单相的1.2~3倍,强化换热效果。
[Abstract]:The heat transfer characteristics of a fully developed gas-liquid Taylor flow in a 0.5mm capillary are studied by moving computational domain method. The shape, pressure drop and heat transfer characteristics of the Taylor bubble are analyzed. The results show that with the increase of inlet Reynolds number re, the unstable region of the bubble tail increases, the thickness of liquid film increases and the bubble length becomes longer, and with the increase of bubble volume fraction 尉 g, the bubble shape is basically unchanged and the length increases gradually. The drag factor f decreases with the increase of Reand 尉 g, and the drag coefficient of two phases is higher than that of single phase. The average Nusselt number increases with re increasing, and decreases gradually with increase of 尉 g, and with the increase of 尉 g, it decreases linearly by 1. 2 times than that of single phase, so the heat transfer effect is enhanced.
【作者单位】: 山西汾西重工有限责任公司;浙江大学能源工程学院;浙江大学能源工程学院先进航空发动机协同创新中心;
【基金】:浙江省自然科学基金项目(LZ13E060001) 国家自然科学基金国际合作项目(51210011)~~
【分类号】:TK124
【相似文献】
相关期刊论文 前10条
1 罗国平,邹新杰;微通道冷却器的设计[J];兵工自动化;2004年03期
2 康春霞,黄新波;微通道的流动阻力分析[J];微纳电子技术;2004年07期
3 王浩;吴慧英;郑平;;芯片微通道沸腾相变过程中流动交变现象探析[J];工程热物理学报;2006年S2期
4 陈永平;肖春梅;施明恒;吴嘉峰;;微通道冷凝研究的进展与展望[J];化工学报;2007年09期
5 刘敏珊;王国营;董其伍;;微通道内液体流动和传热研究进展[J];热科学与技术;2007年04期
6 甘云华;杨泽亮;;轴向导热对微通道内传热特性的影响[J];化工学报;2008年10期
7 云和明;陈宝明;程林;;粗糙平板微通道流动和传热的数值模拟[J];工程热物理学报;2009年11期
8 金文;张鸿雁;何文博;;齿形微通道内流流场数值模拟及试验研究[J];排灌机械工程学报;2011年03期
9 苗辉;黄勇;陈海刚;;随机粗糙微通道中的流动和传热特性[J];北京航空航天大学学报;2011年06期
10 杨凯钧;左春柽;丁发喜;王克军;吕海武;曹倩倩;王吉顺;;微通道散热器长直微通道的新加工工艺研究[J];吉林化工学院学报;2011年09期
相关会议论文 前10条
1 史东山;李锦辉;刘赵淼;;关于微通道相关问题研究方法现状分析[A];北京力学会第18届学术年会论文集[C];2012年
2 逄燕;刘赵淼;;温黏关系对微通道内液体流动和传热性能的影响[A];北京力学会第18届学术年会论文集[C];2012年
3 范国军;逄燕;刘赵淼;;微通道中液体流动和传热特性的影响因素概述[A];北京力学会第18届学术年会论文集[C];2012年
4 刘丽昆;逄燕;刘赵淼;;几何参数对微通道液体流动和传热性能影响的研究[A];北京力学会第18届学术年会论文集[C];2012年
5 刘丽昆;刘赵淼;申峰;;几何参数对微通道黏性耗散影响的研究[A];北京力学会第19届学术年会论文集[C];2013年
6 肖鹏;申峰;刘赵淼;;微通道中矩形微凹槽内流场的数值模拟[A];北京力学会第19届学术年会论文集[C];2013年
7 肖鹏;申峰;刘赵淼;李易;;凹槽微通道流场的三维数值模拟[A];北京力学会第20届学术年会论文集[C];2014年
8 周继军;刘睿;张政;廖文裕;佘汉佃;;微通道传热中的两相间歇流[A];上海市制冷学会2011年学术年会论文集[C];2011年
9 夏国栋;柴磊;周明正;杨瑞波;;周期性变截面微通道内液体流动与传热的数值模拟研究[A];中国力学学会学术大会'2009论文摘要集[C];2009年
10 娄文忠;Herbert Reichel;;硅微通道致冷系统设计与仿真研究[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年
相关重要报纸文章 前2条
1 本报记者 陈杰;空调将进入微通道时代[N];科技日报;2008年
2 张亮;美海军成功为未来武器研制微型散热器[N];科技日报;2005年
相关博士学位论文 前10条
1 任滔;微通道换热器传热和制冷剂分配特性的数值模拟和实验验证[D];上海交通大学;2014年
2 翟玉玲;复杂结构微通道热沉流动可视化及传热过程热力学分析[D];北京工业大学;2015年
3 杨珊珊;粗糙微通道流体流动特性的分形分析[D];华中科技大学;2015年
4 伍根生;基于纳米结构的气液相变传热强化研究[D];东南大学;2015年
5 卢玉涛;微通道内气—液两相分散与传质的研究[D];天津大学;2014年
6 赵亮;电动效应作用下微通道内液体流动特性[D];哈尔滨工业大学;2009年
7 李志华;微通道流场混合与分离特性的研究[D];浙江大学;2008年
8 季喜燕;微通道内气液两相流动及传质过程研究[D];天津大学;2011年
9 贺占蜀;交错互通微通道多孔网格板制造及其强化传热研究[D];华南理工大学;2011年
10 范晓光;微通道内蒸汽及混合蒸气冷凝流动与传热[D];大连理工大学;2012年
相关硕士学位论文 前10条
1 程天琦;新型分合式微通道混合性能的研究[D];西北大学;2015年
2 何颖;三角形截面微通道中流体的流动和换热特性的理论研究和结构优化[D];昆明理工大学;2015年
3 刘雅鹏;垂直磁场作用下平行板微通道内Maxwell流体的周期电渗流[D];内蒙古大学;2015年
4 吴媛媛;制冷压缩冷凝机组中微通道换热器的研究[D];南京理工大学;2015年
5 马晓雯;硅基底表面特性对微通道界面滑移的影响[D];大连海事大学;2015年
6 张志强;微通道蒸发器表面结露工况下性能研究[D];天津商业大学;2015年
7 毛航;二氧化碳微通道气冷器优化设计及分子动力学模拟[D];郑州大学;2015年
8 崔振东;微通道内空化流动传热的Lattice Boltzmann模拟[D];中国科学院研究生院(工程热物理研究所);2015年
9 邱德来;疏水性对微通道流动与换热的影响[D];南京师范大学;2015年
10 张蒙蒙;二氧化碳微通道平行流气冷器流量分配特性研究[D];郑州大学;2015年
,本文编号:1977995
本文链接:https://www.wllwen.com/kejilunwen/dongligc/1977995.html