工业锅炉快装式脱硫塔结构设计与优化
[Abstract]:With the development of productivity and the increase of energy consumption, sulfur dioxide produced by industrial boilers when burning coal will be mixed in flue gas. The formation of sulfur dioxide triggers Greenhouse Effect, acidification of water and soil, and a serious impact on plant and animal life. In order to reduce the adverse impact of sulfur dioxide on the environment, various countries began to study desulfurization technology, and gradually extended to the flue gas treatment system of large boilers. More than 95% of the boilers in our country are small and medium-sized industrial boilers, which have the characteristics of weak capital and technical strength, so it is difficult to bear the high cost of installation and operation of large-scale flue gas desulfurization system. Therefore, it is of great significance to design a fast-mounted desulfurizer for industrial boilers. By analyzing the commonly used flue gas desulfurization technology and comparing the advantages and disadvantages of various desulphurization processes, the wet flue gas desulfurization technology which can meet the needs of high emission is selected, and the most widely used limestone wet flue gas desulfurization technology is taken as an example. The factors influencing the desulfurization efficiency of the process were analyzed by using the double film theory and the ionization equation. In order to promote the gas-liquid mixed mass transfer process, the swirl atomization and injection technology, combined with the dual absorption mode of common spray, can increase the absorption efficiency and reduce the desulfurization liquid gas ratio at the same time. When the pH value of the slurry is about 5.4 and the supersaturation of gypsum in the slurry is between 120% and 130%, it can not only guarantee the absorption effect but also improve the gypsum quality. Taking the design of limestone wet flue gas desulfurization tower of an industrial boiler in Guangdong province as an example, according to the parameters of coal quality, boiler capacity, flue gas, absorbent and so on, the absorbent consumption and gypsum production amount of absorption system are calculated by using sulfur element balance. Design parameters such as circulating slurry volume, oxidizing air volume, etc. According to the calculated parameters, the absorber suitable for 75t/h boiler is designed, and the absorption system is optimized. The diameter of the slurry pool of the absorption tower is 5.0 m, the working level of the slurry tank is 6.1 m, the upper part of the absorption zone is designed with three layers of common spray layer with a staggered angle of 15 掳between the adjacent two layers, and the lower part of the absorption zone is designed with two layers of swirl atomization spray layer. The intersecting angle of the adjacent two layers is 45 掳. The swirl atomization spray layer is designed to have a tangential diameter of 1 700 mm and the height of the tangent circle lies below the center of the atomizer from 200mm to 500mm. In the test data of the retrofitting project of desulfurization tower of a power plant and an industrial boiler, the absorption efficiency of 2% to 4% can be improved by adding a new layer of swirl atomization layer below the three-layer common spray layer. Therefore, the design of two-layer swirl atomization spray layer and three-layer common spray layer absorption zone combination can meet the design requirements of 98.9% desulphurization efficiency. The SO2 emission can be reduced by more than 200 tons per year and the economic benefit of emission reduction is more than 300000 yuan by using the absorber to treat the flue gas.
【学位授予单位】:华南理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TK229
【参考文献】
相关期刊论文 前10条
1 陈梅倩,何伯述;氨法脱除烟气中气态污染物的应用分析[J];北方交通大学学报;2003年04期
2 韩琪,李忠华;石灰石/石膏湿法烟气脱硫的化学过程研究[J];电力环境保护;2002年01期
3 陈莲芳,徐夕人;湿法烟气脱硫系统pH值的控制指标[J];动力工程;2005年05期
4 杜谦;马春元;董勇;吴少华;秦裕琨;;液气比对石灰石-石膏湿法烟气脱硫过程的影响[J];动力工程;2007年03期
5 郭瑞堂;高翔;丁红蕾;骆仲泱;倪明江;岑可法;;湿法烟气脱硫存在SO_3~(2-)时石灰石的活性研究[J];动力工程;2008年01期
6 张秀云;郑继成;;国内外烟气脱硫技术综述[J];电站系统工程;2010年04期
7 张永照;燃煤锅炉脱硫技术综述[J];工业锅炉;2003年03期
8 赵小勇,许轩,王睿,王茂钢,王大群;烟气脱硫技术进展[J];环境保护科学;2001年03期
9 汪波;烟气脱硫技术的经济比较[J];环境保护;1997年10期
10 沈迪新,杨晓葵;中、日、美三国烟气脱硫技术的发展和现状[J];环境科学进展;1993年03期
相关博士学位论文 前4条
1 周志华;海水脱硫中吸收塔脱硫效率的研究[D];天津大学;2005年
2 张芝涛;大气压窄间隙DBD等离子体源与应用基础研究[D];东北大学;2003年
3 林永明;大型石灰石—石膏湿法喷淋脱硫技术研究及工程应用[D];浙江大学;2006年
4 杨剑;湿法烟气脱硫氧化过程动力学研究[D];重庆大学;2008年
相关硕士学位论文 前10条
1 袁波;35T/h锅炉烟气治理方案选择与监控系统改造[D];昆明理工大学;2010年
2 高建;喷雾干燥法烟气脱硫技术研究[D];南京工业大学;2004年
3 张均刚;中小型燃煤锅炉及工业炉窑烟气除尘脱硫设备的研究[D];武汉理工大学;2004年
4 聂华;2×300MW火电机组脱硫工艺研究及设计[D];重庆大学;2004年
5 陈公卫;山东黄岛电厂2×125MW机组烟气脱硫技术方案设计[D];山东大学;2005年
6 张国兴;燃煤电厂石灰石—石膏湿法烟气脱硫影响因素的再研究[D];华北电力大学(河北);2006年
7 张新宁;2×300MW机组烟气脱硫工程方案的设计研究[D];重庆大学;2006年
8 赵光玲;石灰石—石膏法二氧化硫吸收过程理论研究[D];东北大学;2008年
9 邱云龙;循环流化床烟气脱硫技术[D];东北大学;2011年
10 郑龙阔;旺隆热电厂湿法烟气脱硫技改研究[D];华南理工大学;2012年
,本文编号:2205727
本文链接:https://www.wllwen.com/kejilunwen/dongligc/2205727.html