基于CEEMD样本熵的柴油机故障诊断研究
[Abstract]:As a kind of common complex power machinery, diesel engine is widely used in vehicles, aircraft, ships and other vehicles. It has the characteristics of high efficiency and high specific power. Whether the whole power system can operate safely and reliably is affected by many factors, and the working condition of diesel engine is one of them. Therefore, it is of great practical value to improve the monitoring and fault diagnosis technology of diesel engine. The state information of the internal parts of a diesel engine is reflected in the vibration of the cylinder head through a certain channel, so it is an effective method to diagnose the fault of the diesel engine by the vibration signal of the cylinder head. The research of this subject mainly includes how to extract the fault characteristic information from the vibration signal of the cylinder head of diesel engine effectively and to diagnose and identify the fault state of the diesel engine. A new method of diesel engine fault diagnosis based on CEEMD- sample entropy is put forward. The main works of this paper are as follows: (1) an experimental platform for measuring vibration signals of diesel engine cylinder head is designed and constructed. Taking CZ4110 diesel engine as an example, the vibration signal data of cylinder head of the diesel engine under different working conditions (including normal and abnormal states) are collected. On the basis of the data, it can be used to extract the vibration signal characteristics of diesel engine cylinder head and to study the fault diagnosis. (2) the cause of diesel engine failure and the propagation channel are studied. The characteristics of cylinder head vibration signal under different faults of diesel engine are analyzed by means of theoretical analysis and experimental verification, starting with time domain and frequency domain. The characteristics of cylinder head vibration signal in diesel engine are revealed in this paper. (3) the application of empirical mode EMD decomposition principle in signal decomposition field is studied, and the problem of mode aliasing in the process of EMD signal decomposition is discussed. The EEMD and CEEMD decomposition methods with noise auxiliary function are introduced. The experimental results show that the two methods can suppress the mode aliasing to a certain extent and the method is effective. The experiment also proves that CEEMD can decompose the signal to different time scales to extract the local information of the signal. A denoising method combining CEEMD and wavelet is proposed, that is, the signal is decomposed by CEEMD, then each IMF is de-noised by wavelet, and then the IMF is reconstructed as the final de-noising signal. Experimental results show that the proposed method is effective in noise reduction. (4) sample entropy is introduced to measure signal complexity and nonlinearity, and it is applied to measure the complexity of vibration sequence in diesel engine when fault occurs. The analysis shows that the sample entropy is consistent and affected by parameters. In selecting the IMF component, the selection is based on the magnitude of the correlation between the IMF component and the original signal. For the cylinder head signal of diesel engine, the information of cylinder head vibration signal in different frequency bands is obtained by quantizing the IMF component decomposed by CEEMD with sample entropy, which is regarded as the input vector of pattern recognition. (5) the entropy of IMF samples decomposed by CEEMD is used as feature vector to input support vector machine to train diesel engine fault samples, and compared with other diagnosis methods, the accuracy is improved. The application of principal component analysis (PCA) principle in fault feature dimensionality reduction is studied. Through further comparative diagnosis experiments, it is proved that this method not only effectively preserves fault feature information, but also removes redundant components. More accurate diagnosis information is obtained, and the method of CEEMD- sample entropy can be used to identify diesel engine fault.
【学位授予单位】:江苏科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TK428
【相似文献】
相关期刊论文 前10条
1 曹龙汉,曹长修,孙颖楷,景有泉,郭振;柴油机故障诊断技术的现状及展望[J];重庆大学学报(自然科学版);2001年06期
2 胡木水;柴油机故障诊断方法[J];中国水运;2002年05期
3 王珍,丁子佳,李玉光,李吉;局域波自回归谱及其在柴油机故障诊断中的应用研究[J];内燃机工程;2004年03期
4 张维新,张俊峰;柴油机故障诊断技术趋向分析[J];天津航海;2005年02期
5 臧刚权;杨文位;;柴油机故障诊断技术方法综述[J];农业机械化与电气化;2006年06期
6 杨文位;;柴油机故障诊断的现代方法与展望[J];农机使用与维修;2007年01期
7 刘辉;周志英;;基于动态模糊矩阵的柴油机故障诊断[J];煤炭技术;2007年08期
8 王德洪;;柴油机故障诊断的几点体会[J];装备制造技术;2008年01期
9 马善伟;乐正伟;吕健;刘峗;;柴油机故障诊断技术综述[J];上海第二工业大学学报;2008年02期
10 霍本林;;柴油机故障诊断系统的研究[J];科技创新导报;2010年29期
相关会议论文 前3条
1 段伟武;宋宜斌;;基于自适应神经网络模糊推理系统的柴油机故障诊断[A];第二十九届中国控制会议论文集[C];2010年
2 王鑫;于洪亮;段树林;宋玉超;;基于遗传算法选择优化神经网络的柴油机故障诊断研究[A];2011下一代自动测试系统学术研讨会论文集[C];2011年
3 王鑫;于洪亮;段树林;宋玉超;;基于遗传算法选择优化神经网络的柴油机故障诊断研究[A];第十届全国振动理论及应用学术会议论文集(2011)上册[C];2011年
相关博士学位论文 前3条
1 王珍;基于局域波分析的柴油机故障诊断方法的研究及应用[D];大连理工大学;2002年
2 李宏坤;基于信息融合技术船舶柴油机故障诊断方法的研究与应用[D];大连理工大学;2003年
3 蔡晓光;柴油机智能故障诊断系统研究[D];中国矿业大学;2009年
相关硕士学位论文 前10条
1 沈绍辉;基于人工蜂群算法优化支持向量机的柴油机故障诊断研究[D];中北大学;2016年
2 陈晗;基于信息融合的柴油机故障诊断研究[D];江苏科技大学;2016年
3 储维;基于CEEMD样本熵的柴油机故障诊断研究[D];江苏科技大学;2015年
4 冯阳;故障树分析和模糊理论在柴油机故障诊断中的应用[D];北京理工大学;2008年
5 宋栋;基于嵌入式的柴油机故障诊断系统[D];中北大学;2012年
6 王晋;基于粒子滤波信号处理的柴油机故障诊断[D];中北大学;2012年
7 韩慧勇;基于多源信息融合的柴油机故障诊断研究[D];中北大学;2012年
8 刘峥;基于多传感器信息融合的柴油机故障诊断系统[D];湖南大学;2010年
9 郭钢祥;基于局域均值分解和神经网络的柴油机故障诊断研究[D];中北大学;2013年
10 刘晓东;基于粗糙集的柴油机故障诊断的研究[D];大连交通大学;2008年
,本文编号:2268276
本文链接:https://www.wllwen.com/kejilunwen/dongligc/2268276.html