缸内直喷生物柴油转子发动机喷雾特性和燃烧过程的研究
发布时间:2021-06-28 20:15
随着能源危机和环境污染的加剧,人们迫切需要更加清洁和高效的新型动力装置,这使得燃用传统燃料的发动机面临更加严峻的挑战。在此背景下,寻找新型替代燃料以及提高发动机燃烧效率是应对上述挑战的两个最佳途径。其中,针对第一个途径即寻找替代燃料,生物柴油作为一种可再生新型燃料,其燃烧做功能力与传统柴油相当,且能有效降低发动机排放,是柴油发动机的理想替代燃料之一。针对第二个途径即提高发动机燃烧效率,除了继续研究如何提高传统往复式发动机效率外,人们也在尝试发明和改进其它新型的发动机来提高燃料燃烧效率。在新型内燃机中,转子发动机相比传统往复式发动机,具有质量轻、功重比高、运行平稳等先天优势,使其成为往复式发动机的替代者之一。综上可以看出:燃用生物柴油的转子发动机能结合生物柴油和转子发动机两者的优势,是一种具有广阔前景的新型高效动力装置。但是,转子发动机的结构和运行方式与往复式发动机不同,这导致缸内的混合气运动和燃烧过程也不同,其狭长的燃烧室会导致火焰在传播过程中容易出现淬熄而增加残留的未燃烃。当燃用生物柴油时,生物柴油较慢的雾化蒸发速度会进一步加剧这一问题,而目前关于生物柴油转子发动机工作过程的基础研究...
【文章来源】:江苏大学江苏省
【文章页数】:196 页
【学位级别】:博士
【文章目录】:
DEDICATION
ABSTRACT
摘要
NOMENCLATURE
Chapter 1 Introduction
1.1 Background
1.2 Working Principle of Rotary Engine
1.3 Characteristics of Rotary Engine
1.4 Difference between rotary and reciprocating engines
1.5 Advantages and Disadvantages of Wankel Rotary Engine with respect to Reciprocating Engine
1.5.1 Advantages of Wankel Rotary Engine over Reciprocating Engine
1.5.2 Disadvantages of Wankel Rotary Engine over Reciprocating Engine
1.6 Rotary engine development and application status
1.6.1 Development and application in China
1.6.2 Development and application indifferent countries at present
1.7 Biodiesel as fuel in internal combustion(IC)engine
1.7.1 Biodiesel production
1.7.2 Characteristics of biodiesel fueled rotary engine
1.7.3 Advantages of biodiesel fueled rotary engine
1.8 Chapter Conclusions
Chapter 2 Literature Review
2.1 Introduction and Background
2.2 Technical-conventional Rotary Engines
2.2.1 Applications other than to Automobiles
2.3 Techniques for improving engine performance
2.3.1 Optimizing Ignition Parameters
2.3.2 Optimizing Injection Parameters
2.4 Types of fuels and utilization methods in Rotary Engine for performance improvement
2.4.1 Single fuel component
2.4.1.1 Hydrogen
2.4.1.2 Natural gas
2.4.1.3 Liquefied petroleum gas(LPG)
2.4.1.4 Diesel
2.4.1.5 Compressed air
2.4.1.6 Kerosene
2.4.2 Multi fuel component
2.4.2.1 Hydrogen and Gasoline
2.4.2.2 Hydrogen and Alcohol
2.4.2.3 Hydrogen and Natural gas
2.4.2.4 Natural gas and Diesel
2.5 Present and Future of Rotary IC engines
2.5.1 Emissions:the technology enforcer
2.5.2 Tomorrows Rotary Engine
2.6 Summary of research gaps
2.7 Research motivation
2.7.1 Bio-fuels:a prudent step
2.7.2 Why Bio-diesel
2.8 Purposes of the Research
2.9 Content of Thesis
2.10 Chapter Conclusions
Chapter 3 Research Methodology
3.1 Spray Experimental Set-up
3.1.1 Constant volume vessel
3.1.2Optical diagnostic and Image processing
3.1.3 Fuel properties
3.2 Simulation Methodology
3.2.1 Simulation Geometric model generation and meshing of DIRE
3.2.2 Numerical/Computing models selection
3.2.3 Boundary conditions
3.3 Numerical/Computing Models and Model validation
3.3.1 Turbulence model
3.3.1.1 Turbulence energy
3.3.1.2 Turbulence dissipation rate
3.3.2 Discrete Phase Model
3.3.3 Combustion model
3.3.4 NOx model
3.3.4.1 Thermal NOx
3.3.4.2 Prompt NOx
3.3.5 Soot Model
3.3.6 Validation of model
3.4 Conclusions
Chapter 4 Study on spray characteristics and influence factors of combustion process in a biodiesel fueled direct injection rotary engine
4.1 Spray under inert conditions
4.1.1 Liquid spray penetration length(SL)characteristics
4.1.2 Spray cone angle characteristics
4.1.3 Spray pattern(SP)characteristics
4.2 Compression stage Air-Fuel mixture formation at different chamber conditions
4.3 Conclusions
Chapter 5 Effect of injection timing on mixture formation and combustion process in a direct injection rotary engine(DIRE)fueled with biodiesel
5.1 Compression Stage Air Flow Analysis
5.2 Compression stage Air-Fuel movement process Analysis
5.2.1 Start stage Air-Fuel movement process at100°CA BTDC injection timing
5.2.2 Middle stage Air-Fuel movement process at80°CA BTDC injection timing
5.2.3 Final stage Air-Fuel movement process at60°CA BTDC injection timing
5.3 Analysis of combustion process
5.4 Analysis of major emissions
5.5 Conclusions
Chapter 6 Effect of advance ignition timing on mixture formation and combustion process in a direct injection rotary engine(DIRE)fueled with biodiesel
6.1 Compression Stage Air Flow Analysis
6.2 Compression stage Air-Fuel movement process Analysis at80°CA(BTDC)injection timing
6.3 Effects of advance spark timing on combustion process at80°CA(BTDC)injection timing
6.4 Conclusions
Chapter 7 Effect of equivalence ratio on combustion process in a direct injection rotary engine(DIRE)fueled with biodiesel
7.1 Pressure
7.2 Chamber Temperature
7.3 Combustion process analysis
7.4 Analysis of Emissions
7.5 Conclusions
Chapter 8 Conclusion and recommendations
8.1 Summary of thesis
8.2 Recommendations for future work
References
Acknowledgements
Publications
APPENDIX
Appendix A
【参考文献】:
期刊论文
[1]配气相位对三角转子气动发动机性能的影响[J]. 潘剑锋,肖曼,范宝伟,潘振华. 江苏大学学报(自然科学版). 2016(02)
[2]进气相位对天然气转子发动机流场和燃烧过程的影响[J]. 范宝伟,潘剑锋,唐爱坤,潘振华,薛宏. 农业机械学报. 2015(07)
[3]点火位置对天然气转子发动机燃烧的影响[J]. 潘剑锋,范宝伟,陈瑞,卢青波,唐爱坤,邵霞,王谦. 内燃机工程. 2013(01)
[4]世界能源现状与内燃机的发展机遇[J]. 朱剑明,彭代勇. 内燃机工程. 2011(02)
[5]转子发动机偏心轴结构设计及强度校核[J]. 管胜荣,张俊义,张志清,赵润增. 小型内燃机与摩托车. 2010(03)
[6]STRATEGY FOR DIESEL ROTARY ENGINE WITH COMMON RAIL INJECTION SYSTEM[J]. WU Jinjun HAI Jingtao SHI Jianzhong China Academy of Machinery Science and Technology, Beijing 100044, China LI Xuesong YANG Qing WANG Shangyong Department of Vehicle Engineering, Beijing Institute of Technology, Beijing 100081, China. Chinese Journal of Mechanical Engineering. 2006(03)
本文编号:3254980
【文章来源】:江苏大学江苏省
【文章页数】:196 页
【学位级别】:博士
【文章目录】:
DEDICATION
ABSTRACT
摘要
NOMENCLATURE
Chapter 1 Introduction
1.1 Background
1.2 Working Principle of Rotary Engine
1.3 Characteristics of Rotary Engine
1.4 Difference between rotary and reciprocating engines
1.5 Advantages and Disadvantages of Wankel Rotary Engine with respect to Reciprocating Engine
1.5.1 Advantages of Wankel Rotary Engine over Reciprocating Engine
1.5.2 Disadvantages of Wankel Rotary Engine over Reciprocating Engine
1.6 Rotary engine development and application status
1.6.1 Development and application in China
1.6.2 Development and application indifferent countries at present
1.7 Biodiesel as fuel in internal combustion(IC)engine
1.7.1 Biodiesel production
1.7.2 Characteristics of biodiesel fueled rotary engine
1.7.3 Advantages of biodiesel fueled rotary engine
1.8 Chapter Conclusions
Chapter 2 Literature Review
2.1 Introduction and Background
2.2 Technical-conventional Rotary Engines
2.2.1 Applications other than to Automobiles
2.3 Techniques for improving engine performance
2.3.1 Optimizing Ignition Parameters
2.3.2 Optimizing Injection Parameters
2.4 Types of fuels and utilization methods in Rotary Engine for performance improvement
2.4.1 Single fuel component
2.4.1.1 Hydrogen
2.4.1.2 Natural gas
2.4.1.3 Liquefied petroleum gas(LPG)
2.4.1.4 Diesel
2.4.1.5 Compressed air
2.4.1.6 Kerosene
2.4.2 Multi fuel component
2.4.2.1 Hydrogen and Gasoline
2.4.2.2 Hydrogen and Alcohol
2.4.2.3 Hydrogen and Natural gas
2.4.2.4 Natural gas and Diesel
2.5 Present and Future of Rotary IC engines
2.5.1 Emissions:the technology enforcer
2.5.2 Tomorrows Rotary Engine
2.6 Summary of research gaps
2.7 Research motivation
2.7.1 Bio-fuels:a prudent step
2.7.2 Why Bio-diesel
2.8 Purposes of the Research
2.9 Content of Thesis
2.10 Chapter Conclusions
Chapter 3 Research Methodology
3.1 Spray Experimental Set-up
3.1.1 Constant volume vessel
3.1.2Optical diagnostic and Image processing
3.1.3 Fuel properties
3.2 Simulation Methodology
3.2.1 Simulation Geometric model generation and meshing of DIRE
3.2.2 Numerical/Computing models selection
3.2.3 Boundary conditions
3.3 Numerical/Computing Models and Model validation
3.3.1 Turbulence model
3.3.1.1 Turbulence energy
3.3.1.2 Turbulence dissipation rate
3.3.2 Discrete Phase Model
3.3.3 Combustion model
3.3.4 NOx model
3.3.4.1 Thermal NOx
3.3.4.2 Prompt NOx
3.3.5 Soot Model
3.3.6 Validation of model
3.4 Conclusions
Chapter 4 Study on spray characteristics and influence factors of combustion process in a biodiesel fueled direct injection rotary engine
4.1 Spray under inert conditions
4.1.1 Liquid spray penetration length(SL)characteristics
4.1.2 Spray cone angle characteristics
4.1.3 Spray pattern(SP)characteristics
4.2 Compression stage Air-Fuel mixture formation at different chamber conditions
4.3 Conclusions
Chapter 5 Effect of injection timing on mixture formation and combustion process in a direct injection rotary engine(DIRE)fueled with biodiesel
5.1 Compression Stage Air Flow Analysis
5.2 Compression stage Air-Fuel movement process Analysis
5.2.1 Start stage Air-Fuel movement process at100°CA BTDC injection timing
5.2.2 Middle stage Air-Fuel movement process at80°CA BTDC injection timing
5.2.3 Final stage Air-Fuel movement process at60°CA BTDC injection timing
5.3 Analysis of combustion process
5.4 Analysis of major emissions
5.5 Conclusions
Chapter 6 Effect of advance ignition timing on mixture formation and combustion process in a direct injection rotary engine(DIRE)fueled with biodiesel
6.1 Compression Stage Air Flow Analysis
6.2 Compression stage Air-Fuel movement process Analysis at80°CA(BTDC)injection timing
6.3 Effects of advance spark timing on combustion process at80°CA(BTDC)injection timing
6.4 Conclusions
Chapter 7 Effect of equivalence ratio on combustion process in a direct injection rotary engine(DIRE)fueled with biodiesel
7.1 Pressure
7.2 Chamber Temperature
7.3 Combustion process analysis
7.4 Analysis of Emissions
7.5 Conclusions
Chapter 8 Conclusion and recommendations
8.1 Summary of thesis
8.2 Recommendations for future work
References
Acknowledgements
Publications
APPENDIX
Appendix A
【参考文献】:
期刊论文
[1]配气相位对三角转子气动发动机性能的影响[J]. 潘剑锋,肖曼,范宝伟,潘振华. 江苏大学学报(自然科学版). 2016(02)
[2]进气相位对天然气转子发动机流场和燃烧过程的影响[J]. 范宝伟,潘剑锋,唐爱坤,潘振华,薛宏. 农业机械学报. 2015(07)
[3]点火位置对天然气转子发动机燃烧的影响[J]. 潘剑锋,范宝伟,陈瑞,卢青波,唐爱坤,邵霞,王谦. 内燃机工程. 2013(01)
[4]世界能源现状与内燃机的发展机遇[J]. 朱剑明,彭代勇. 内燃机工程. 2011(02)
[5]转子发动机偏心轴结构设计及强度校核[J]. 管胜荣,张俊义,张志清,赵润增. 小型内燃机与摩托车. 2010(03)
[6]STRATEGY FOR DIESEL ROTARY ENGINE WITH COMMON RAIL INJECTION SYSTEM[J]. WU Jinjun HAI Jingtao SHI Jianzhong China Academy of Machinery Science and Technology, Beijing 100044, China LI Xuesong YANG Qing WANG Shangyong Department of Vehicle Engineering, Beijing Institute of Technology, Beijing 100081, China. Chinese Journal of Mechanical Engineering. 2006(03)
本文编号:3254980
本文链接:https://www.wllwen.com/kejilunwen/dongligc/3254980.html