当前位置:主页 > 科技论文 > 动力论文 >

双向温差作用下矩形浅液池内Marangoni-热毛细对流研究

发布时间:2017-09-26 12:24

  本文关键词:双向温差作用下矩形浅液池内Marangoni-热毛细对流研究


  更多相关文章: Marangoni-热毛细对流 垂直热流 水平温度梯度 热流体波 矩形浅液池


【摘要】:自然对流广泛存在于自然界和社会生活当中。流体内部温度梯度引起密度差异形成的浮力对流,以及表面张力梯度所驱动的热毛细对流或者Marangoni对流都属于自然对流。本课题研究的是表面张力梯度所驱动的热对流,其主要形式有两种,当温度梯度方向平行于自由表面时,称之为热毛细对流;当温度梯度方向垂直于自由表面时,称之为Marangoni对流。近年来,学者们分别针对这两种热对流展开了丰富的研究,而在自然界和实际工业中,双向温差耦合作用下的Mrangoni-热毛细对流广泛存在,相比于单向温差作用时,流动更为复杂。因此,本课题以有限容积法为基础,建立了双向温差耦合作用下矩形浅液池的物理模型和数学模型,采用数值模拟对液池内的Marangoni-热毛细对流展开研究,分别讨论了稳态和非稳态情况下流体内部的流动状态,获得了不同工况下流体内的温度场和速度场,分析了各种流型结构的演变规律,讨论了水平温差(Ma数)、底部垂直热流(Q)以及自由表面换热条件(Bi数)对矩形浅液池内流动的影响等,主要结论如下:第一,Ma数和Q均会影响流动的形态,当Ma数较小时且Q=0,流动处于二维稳态流动,随着垂直热流Q增大,液池内流动由单胞流演变为双胞流;当流动处于流向相反的双胞流态时,随着Ma数增大,热壁侧逆时针流胞强度减弱、收缩,而冷壁侧流胞强度增强、延伸,最终变成单胞流动。Ma数和Q的增大均会导致流动的失稳,且波动频率随Ma数和Q均增大,变化曲线有一定的差别,而Bi数的增大,却会抑制流动的失稳。第二,当Ma数很小,QQcr且Q较小时,形成以冷壁中心为源点向热壁传播的两组对称分布的双列热流体波。随着垂直热流Q增大,冷壁上的波源先向后壁侧移动,再向前壁侧移动,当Q足够大时,热壁侧形成两组对称分布的双列热流体波,与冷壁侧热流体波共存。第三,当Ma数较大,QQcr且Q较小时,形成以冷壁中心为源点向热壁传播的两组对称分布的双列热流体波。随着垂直热流Q增大,冷壁上的波源始终保持在冷壁中心处,液池内波动紊乱而热壁侧未形成波动。第四,当MaMacr且Q=0时,热壁附近呈双列斜波,随着垂直热流Q的增大,热壁侧热流体波消失而冷壁侧出现两组对称分布的双列热流体波,且其波源始终保持在冷壁中心处。
【关键词】:Marangoni-热毛细对流 垂直热流 水平温度梯度 热流体波 矩形浅液池
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TK124
【目录】:
  • 摘要3-4
  • ABSTRACT4-8
  • 主要符号表8-9
  • 1 绪论9-19
  • 1.1 引言9
  • 1.2 研究现状9-18
  • 1.2.1 Marangoni对流研究现状9-11
  • 1.2.2 热毛细对流研究现状11-17
  • 1.2.3 耦合Marangoni对流与热毛细对流的研究17-18
  • 1.3 课题的研究目的及研究内容18-19
  • 2 物理数学模型19-25
  • 2.1 引言19
  • 2.2 物理模型19-20
  • 2.3 控制方程及定解条件20-23
  • 2.3.1 控制方程20
  • 2.3.2 定解条件20-21
  • 2.3.3 控制方程及定解条件的无量纲化21-23
  • 2.4 计算工况23
  • 2.5 模拟方法23-25
  • 2.5.1 软件简介23
  • 2.5.2 数值方法及网格验证23-25
  • 3 双向温差作用下矩形浅液池内的Marangoni-热毛细对流25-53
  • 3.1 稳态Marangoni-热毛细对流25-35
  • 3.1.1 垂直热流密度对稳态Marangoni-热毛细对流的影响25-30
  • 3.1.2 水平方向温度梯度对稳态Marangoni-热毛细对流的影响30-34
  • 3.1.3 小结34-35
  • 3.2 非稳态Marangoni-热毛细对流35-53
  • 3.2.1 自由表面非稳态Marangoni-热毛细对流的波动形态36-40
  • 3.2.2 竖直截面上非稳态Marangoni-热毛细对流的波动形态40-44
  • 3.2.3 非稳态Marangoni-热毛细对流不同流态的波动特性44-47
  • 3.2.4 Bi数对非稳态Marangoni-热毛细对流的影响47-49
  • 3.2.5 非稳态Marangoni-热毛细对流的频谱分析49-52
  • 3.2.6 小结52-53
  • 4 结论53-54
  • 致谢54-55
  • 参考文献55-61
  • 附录61
  • A. 作者在攻读硕士学位期间发表的论文61
  • B. 作者在攻读硕士学位期间参加的科研项目61

【相似文献】

中国期刊全文数据库 前10条

1 赵新兴;李友荣;彭岚;吴双应;曾丹苓;;环形浅液池内热毛细对流的渐近解[J];工程热物理学报;2007年04期

2 李友荣;欧阳玉清;王双成;吴双应;;环形浅液池内浮力-热毛细对流的渐近解[J];工程热物理学报;2010年11期

3 龚振兴;李友荣;彭岚;吴双应;石万元;;旋转环形浅液池内双组分溶液耦合热-溶质毛细对流渐近解[J];物理学报;2013年04期

4 程礼椿,王章启,王付战;旋弧喷溅侵蚀的理论分析[J];中国电机工程学报;1989年05期

5 彭岚;石万元;李友荣;曾丹苓;;浮力对环形液池内热毛细对流的影响[J];工程热物理学报;2006年06期

6 赵乾乾;袁竹林;;洗涤室液池内径向的气液分布[J];能源研究与利用;2010年01期

7 龚振兴;李友荣;彭岚;石万元;;环形浅液池内双组分溶液耦合热溶质毛细对流渐近解[J];重庆大学学报;2013年06期

8 李友荣;唐经文;黄旭方;曾丹苓;;环形浅液池内热毛细对流的热力学特性[J];工程热物理学报;2006年02期

9 吴春梅;李友荣;彭岚;吴双应;;邱克拉斯基结构液池内旋转驱动流动及转变[J];工程热物理学报;2010年07期

10 周小明;黄护林;;大尺度环形液池内双层热毛细对流不稳定性[J];工程热物理学报;2011年07期

中国重要会议论文全文数据库 前5条

1 张丽;段俐;康琦;;环形液池浮力-热毛细对流表面振荡现象的临界温差[A];第八届全国实验流体力学学术会议论文集[C];2010年

2 宋志远;;变壁厚圆形储液池的计算[A];第六届空间结构学术会议论文集[C];1996年

3 马世民;;介绍一种玻璃液池底泄料装置[A];2011年全国玻璃窑炉技术研讨交流会论文汇编[C];2011年

4 商奇伟;李友荣;彭岚;吴双应;;环形浅液池内中等Pr数流体的热毛细-浮力对流[A];中国动力工程学会第三届青年学术年会论文集[C];2005年

5 朱鹏;段俐;康琦;;矩形液池中热毛细对流温度振荡特征[A];第八届全国实验流体力学学术会议论文集[C];2010年

中国重要报纸全文数据库 前2条

1 ;草莓的管道化栽培技术(上)[N];湖北科技报;2006年

2 卢金祥 高志顺;中央电视台涿州拍摄基地将成为亚洲最大的基地[N];河北日报;2001年

中国博士学位论文全文数据库 前1条

1 王飞;双向温差作用下环形浅液池内Marangoni-热毛细对流及浮力-Marangoni-热毛细对流基本特性研究[D];重庆大学;2015年

中国硕士学位论文全文数据库 前10条

1 周洋;双向温差作用下矩形浅液池内Marangoni-热毛细对流研究[D];重庆大学;2015年

2 赵新兴;环形浅液池内热毛细对流的渐近解[D];重庆大学;2007年

3 王瑜;旋转对环形浅液池内热毛细对流影响的实验研究[D];重庆大学;2013年

4 凌芳;开口圆形液池内热毛细对流及其失稳机理分析[D];重庆大学;2007年

5 张鸿儒;垂直传热对矩形液池内热毛细对流的影响[D];重庆大学;2010年

6 王双成;环形浅液池内双层流体热对流过程的渐近解[D];重庆大学;2010年

7 周永利;环形双组分液池内耦合热—溶质毛细对流转变过程二维数值模拟[D];重庆大学;2012年

8 刘玉姗;环形液池内热毛细对流的线性稳定性分析[D];重庆大学;2009年

9 商奇伟;环形浅液池内中等Pr数流体热毛细—浮力对流[D];重庆大学;2006年

10 赵星福;第二类化学品开阔陆域泄漏后果分析评价研究[D];大连海事大学;2006年



本文编号:923494

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dongligc/923494.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户35a4b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com