基于遥感的黄海浒苔漂移速度与驱动机制研究
本文关键词:基于遥感的黄海浒苔漂移速度与驱动机制研究 出处:《南京大学》2016年硕士论文 论文类型:学位论文
【摘要】:自2007年以来,黄海浒苔绿潮已连续多年爆发,渐成常态化之势,给有关区域的海洋生态环境和经济发展带来了一定的影响。黄海浒苔绿潮的生消过程伴随着大规模漂移,对其漂移速度和驱动机制的研究可为防灾减灾提供信息支撑。本文基于卫星遥感数据开展了浒苔绿潮漂移速度提取方法、黄海浒苔绿潮漂移速度时空分布特征及驱动机制等研究工作,具体如下:(1)发展了基于假彩色增强影像(ERGB)和目视解译的浒苔绿潮漂移速度遥感提取方法,基于极轨(MODIS)和静止轨道(GOCI)卫星数据进行了方法测试和提取结果对比,分析了提取结果的不确定性;(2)利用MODIS、GOCI等卫星遥感数据,制作了2013-2015年共计57天的黄海浒苔绿潮漂移速度遥感监测产品,在此基础上,从空间分布以及日、月、年等不同时间尺度分析了漂移速度的时空分布特征;(3)结合黄海流场、风场数据,针对不同时段和区域,开展了黄海浒苔绿潮漂移驱动机制分析。主要研究结论如下:(1)本文提出的绿潮漂移速度卫星遥感提取方法具有较高的精度和普适性。基于MODIS和GOCI数据的测试结果表明,采用不同卫星数据源提取的浒苔绿潮漂移速度具有较好的一致性,相对偏差约17%。(2)黄海浒苔绿潮漂移速度(0.01-0.98 m/s,0.34±0.18 m/s)存在空间差异性,漂移速度的高值区(0.34-0.98 m/s,0.50±0.12 m/s,N=303)主要分布在121°E、35°N以南和以西海域(主要分布在30m以浅海域),漂移速度的低值区(0.01-0.34 m/s,0.21±0.08 m/s,N=379)主要分布在121°E、35°N以北和以东海域。(3)黄海浒苔绿潮漂移速度存在明显的时变特征:①基于一天8景GOCI影像(2014年6月28日)的个例研究发现,浒苔绿潮漂移速度的日变幅可达0.30m/s;②从不同月份的对比来看,5月下旬速度较小(均值0.23±0.17m/s,N=39),6月上旬显著增加(均值0.57±0.22 m/s,N=44),6月中旬到7月下旬在0.30 m/s附近波动;③从2013年到2015年,黄海浒苔漂移速度均值逐年递减(2013年:0.38±0.16 m/s,N=135;2014年:0.34±0.18 m/s,N=310;2015年0.30±0.17 m/s,N=235)。(4)海面风场和海表流场是黄海浒苔绿潮漂移的重要驱动因素,但漂移驱动机制存在时空差异性。①从时间上看,5-7月,黄海浒苔绿潮漂移速度的北向分量与风场、流场北向分量都具有相关性;浒苔绿潮漂移速度的东向分量在5月份与风场东向分量显著相关(r=0.34,N=35),在6月份与流场东向分量显著相关(r=0.32,N=230);②35°N以南海域,风场东向分量的影响主要体现在浒苔漂移速度东向分量上(r=0.79,N=48);35°N以北海域,风场北向分量与浒苔漂移速度北向分量有关(r=0.65,N=380);121°E以西,流场的北向分量与浒苔漂移速度北向分量的相关(r=0.30,N=74);121°E以东,风场北向分量与浒苔北向漂移速度分量相关(r=0.64,N=354)。
[Abstract]:Since 2007, the Yellow Sea has been for many years the outbreak of green tide Enteromorpha, gradually become the norm of the potential, bring some impact to the marine ecological environment on regional and economic development. The Yellow Sea Hu moss green tide dissipation process with large drift, can provide information support for disaster prevention and mitigation of the drift velocity and driving mechanism. The satellite remote sensing data based on the Hu moss green tide drift velocity extraction method, the Yellow Sea Hu moss green tide drift velocity distribution and driving mechanism research work as follows: (1) the development of the image based on false color enhancement (ERGB) and Hu moss green tide drift velocity extraction method of visual interpretation, based on polar orbit (MODIS) and geostationary orbit (GOCI) satellite data for the test method and extraction results, analyzed the extraction results of uncertainty; (2) using MODIS and GOCI satellite remote sensing data, making the the Yellow Sea Hu moss green tide drift velocity of remote sensing products 2013-2015 a total of 57 days, on this basis, from the the spatial distribution and the date, month and year of different time scale analysis of spatial distribution characteristics of drift velocity; (3) combined with the the Yellow Sea field and wind field data, according to different time periods and regions, the the Yellow Sea Hu moss green tide Drift driving mechanism analysis. The main conclusions are as follows: (1) the method of Satellite Remote Sensing Extraction with green tide drift velocity proposed in this paper has high accuracy and universality. MODIS and GOCI data based test results showed that the Hu moss green tide drift velocity of different satellite data source extraction has good consistency, the relative deviation is about 17%. (2) the Yellow Sea Hu moss green tide drift velocity (0.01-0.98 m/s, 0.34 + 0.18 m/s) spatial difference, the high value area of drift velocity (0.34-0.98 m/s, 0.50 + 0.12 m/s, N=303) to the South and west of the main distribution area in 121 ~ E, 35 ~ N (mainly distributed in shallow waters of 30m) the low value area, drift velocity (0.01-0.34 m/s, 0.21 + 0.08 m/s, N=379) are mainly distributed in 121 ~ E, 35 ~ N to the north and east of the sea. (3) the Yellow Sea Hu moss green tide drift velocity has obvious time-varying characteristics: 1 day 8 GOCI images (June 28, 2014) based on a case study found that Hu moss green tide drift velocity, amplitude up to 0.30m/s; the comparison of different months, in late May the speed of the smaller (mean 0.23 + 0.17m/s, N=39). In early June, increased significantly (mean 0.57 + 0.22 m/s, N=44), from mid June to late July volatility in the vicinity of 0.30 m/s; and from 2013 to 2015, the Yellow Sea Enteromorpha mean drift velocity decreased year by year (2013: 0.38 + 0.16 m/s, N=135; 2014: 0.34 + 0.18 m/s, N=310; 2015 0.30 + 0.17 m/s, N=235). (4) sea surface wind and sea surface flow field is an important driving factor of the Yellow Sea Hu moss green tide drift, but the drift driving mechanism of temporal and spatial differences. From the time point of view, 5-7 month, the Yellow Sea Hu moss green tide drift velocity and the north component of wind field and flow field of the north component has correlation; Hu moss green tide drift velocity of the East component in May with the wind east component was significantly correlated (r=0.34, N=35), in June and the East component of significant flow related (r=0.32, N=230); the 35 ~ N in the south of the sea, the wind east component of the impact is mainly reflected in the East component on Enteromorpha drift velocity (r=0.79, N=48); 35 N to the North Sea, north wind drift velocity component and Enteromorpha North component related (r=0.65, N=380); 121 degrees west of E, the flow field and the north component of Enteromorpha north component of the drift velocity (r=0.30, N=74); 121 degrees east of E, the wind field north component and Enteromorpha north to drift velocity component correlation (r=0.64, N=354).
【学位授予单位】:南京大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:X55;X87
【参考文献】
相关期刊论文 前10条
1 何世钧;唐莹莉;张婷;李煜;谢圣东;于克锋;何培民;;基于支持向量机的绿潮灾害影响因素的权重分析[J];中国环境科学;2015年11期
2 马艳;郭丽娜;黄容;耿敏;刘学忠;冉建新;;2008—2010年青岛近海浒苔暴发气象条件及其漂移特征[J];气象与环境学报;2015年04期
3 吴传庆;马万栋;王雪蕾;姚延娟;吴迪;;基于环境卫星CCD数据的黄海浒苔遥感监测[J];中国环境监测;2015年03期
4 贾丽莉;张安定;吴孟泉;;基于MODIS的2013年黄海海域浒苔灾害的时空分布[J];鲁东大学学报(自然科学版);2015年02期
5 吉启轩;赵新伟;章志;;江苏海域浒苔时空分布特征及对海洋环境的影响[J];山东农业大学学报(自然科学版);2015年01期
6 黄娟;吴玲娟;高松;李杰;;黄海绿潮分布年际变化分析[J];激光生物学报;2014年06期
7 辛蕾;黄娟;刘荣杰;钟山;肖艳芳;王宁;崔廷伟;;基于混合像元分解的MODIS绿潮覆盖面积精细化提取方法研究[J];激光生物学报;2014年06期
8 王宁;黄娟;崔廷伟;肖艳芳;蔡晓晴;辛蕾;;基于MODIS数据的5种植被指数对不同生长阶段绿潮的探测能力对比及应用[J];激光生物学报;2014年06期
9 巩加龙;肖艳芳;蔡晓晴;牟冰;秦平;刘荣杰;崔廷伟;;空间分辨率对绿潮覆盖面积、密集度卫星遥感信息提取的影响[J];激光生物学报;2014年06期
10 李曰嵩;潘灵芝;肖文军;胡松;杨红;;风对黄海绿潮藻漂移的影响[J];海洋环境科学;2014年05期
相关博士学位论文 前4条
1 丁月e,
本文编号:1344159
本文链接:https://www.wllwen.com/kejilunwen/haiyang/1344159.html