极地海冰浮标监测系统的设计及应用研究
发布时间:2018-03-26 01:50
本文选题:极地 切入点:海冰厚度 出处:《太原理工大学》2015年硕士论文
【摘要】:本课题是在国家自然科学基金“基于电容感应技术的海冰厚度监测方法的研究”(编号:60672028)和“南北极环境综合考察与评估”(编号:CHINAER2014-02-02)十二五专项项目资助下针对南北极海冰自动监测技术展开的应用研究。 随着人类对南北极的不断探索,人们在南北极展开了各种领域的研究。随着研究的不断深入,科学家发现海冰在地球气候,极地海洋,南北极冰冻圈演变以及南北极生物圈等多个领域中起着至关重要的作用。海冰每年最多可以够覆盖地球表面积大约7%左右,其中最大的部分分布在地球的南北极,显然海冰在南北极的研究中占有很大的比重。而海冰的生长消融及漂移是海冰热力学与动力学研究中的重点及难点。 目前国内外关于海冰监测的方法较多,,例如利用卫星遥感技术或飞机航拍技术大范围的监测海冰的生长及漂移,利用长期或短期冰站定点人工监测海冰等。但这些技术手段都有其不足之处,比如经济性差,精度不高和无法长期连续观测等。本文在分析国内外海冰监测技术的现状及其优缺点的基础上,针对极地海冰监测实际现场环境,以海冰浮标为主体,设计了海冰浮标监测系统。论文根据电容式冰厚传感器在极地海冰厚度监测中发现的问题进行了改进研究,以冰基浮标和海洋浮标分别作为监测系统载体,根据监测需求详细研究了监测方案和监测控制软件,包括在浮标上搭载各种传感器,GPS定位模块,铱星无线传输模块等,研制成功海冰浮标监测系统,实现了在无人值守的恶劣环境下长期连续的海冰参数远程监测。 本监测系统利用电容式冰厚传感器判断海冰厚度,利用温度链监测海冰生长过程中的温度剖面的变化,利用冰上声呐传感器传感器和冰下声呐传感器传感器对海冰厚度做辅助监测判断,利用GPS技术定位海冰的漂移轨迹,利用美国铱星网络实时的将数据传回国内。本监测系统具有经济性好,精度高和数据通讯实时性好等优点。 本监测系统进行了实验室和野外的低温实验,以及第30次南极和第6次北极考察中进行了现场实验,实验结果初步表明该海冰浮标监测系统具有可靠的稳定性,精确性以及通讯数据丢包率低等优点,有效地为南北极的科学考察提供了数据支持。
[Abstract]:The research on sea ice thickness monitoring method based on capacitive induction technology was supported by the National Natural Science Foundation of China (No.:: 60672028) and the "Comprehensive investigation and Assessment of Arctic and Southern Environment" (No.: chinerer 2014-02-02). Research on the Application of Polar Sea Ice automatic Monitoring Technology. With the continuous exploration of the Arctic and the South, people have carried out various fields of research in the Arctic and the South. With the deepening of the research, scientists have found that sea ice is in the earth's climate, polar oceans, The evolution of the arctic cryosphere and the arctic biosphere play a crucial role. Sea ice can cover up to about 7 percent of the earth's surface area each year, the largest of which is distributed in the Earth's Arctic and South Pole. It is obvious that the sea ice occupies a large proportion in the study of the Arctic and the South Pole, and the melting and drift of the sea ice is the key and difficult point in the study of thermodynamics and dynamics of sea ice. At present, there are many methods of sea ice monitoring at home and abroad, such as using satellite remote sensing technology or aircraft aerial photography technology to monitor the growth and drift of sea ice on a large scale. Using long-term or short-term ice stations to manually monitor sea ice, etc., but these techniques have their disadvantages, such as poor economy. On the basis of analyzing the present situation of sea ice monitoring technology at home and abroad and its merits and demerits, aiming at the actual field environment of polar sea ice monitoring, the sea ice buoy is taken as the main body. The monitoring system of sea ice buoy is designed. According to the problems found by capacitive ice thickness sensor in monitoring the thickness of polar sea ice, the ice based buoy and the ocean buoy are used as the carrier of the monitoring system, respectively. According to the monitoring requirements, the monitoring scheme and monitoring control software are studied in detail, including carrying various sensors and GPS positioning modules on the buoy, Iridium satellite wireless transmission module, and so on. The monitoring system of sea ice buoy has been developed successfully. Long-term continuous remote monitoring of sea ice parameters in unattended environment is realized. This monitoring system uses capacitive ice thickness sensor to judge sea ice thickness and uses temperature chain to monitor the change of temperature profile in the process of sea ice growth. Using the sonar sensor on the ice and the sonar sensor under the ice to monitor and judge the thickness of the sea ice, the drift track of the sea ice is located by using the GPS technology. The Iridium network is used to transmit data back to China in real time. This monitoring system has the advantages of good economy, high precision and good real-time data communication. The low temperature experiments in laboratory and field, and the field experiments in the 30th Antarctic and 6th Arctic surveys have been carried out in this monitoring system. The experimental results show that the monitoring system of sea ice buoy has reliable stability. The advantages of accuracy and low packet loss rate of communication data provide data support for the scientific exploration of the North and South Pole.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:P715
【参考文献】
相关期刊论文 前10条
1 谢东;李昌禧;;同面散射场电容式砂含水量传感器的研究[J];传感技术学报;2008年12期
2 徐乐年;张磊;员玉良;;基于CDC技术的电容式水平位移传感器[J];传感器与微系统;2010年05期
3 郭井学;孙波;田钢;王帮兵;张向培;;南极普里兹湾海冰厚度的电磁感应探测方法研究[J];地球物理学报;2008年02期
4 秦德培;非平行板电容器电场和电容的简化计算[J];大学物理;1995年01期
5 孟凡文,张玉香,胡连柱;消除电容传感器寄生电容干扰的几种方法[J];今日电子;2004年07期
6 琚汝强;刘敬彪;于海滨;;基于铱星的浮标远程监测与数据传输系统[J];电子技术应用;2010年12期
7 刘秉安;;电容式传感器寄生电容的抑制[J];国外电子测量技术;2011年03期
8 王爱玲,房亚民;电容传感器寄生电容干扰的产生原因及消除方法[J];华北科技学院学报;2005年01期
9 李薇;叶林;张杰;张洪;;光纤式结冰传感器的试验研究[J];华中科技大学学报(自然科学版);2009年08期
10 雷瑞波;李志军;张占海;程言峰;窦银科;;Summer fast ice evolution off Zhongshan Station,Antarctica[J];Chinese Journal of Polar Science;2008年01期
本文编号:1665804
本文链接:https://www.wllwen.com/kejilunwen/haiyang/1665804.html