基于海底观测网的拉曼光谱系统测控电路的设计与实现
发布时间:2018-05-19 17:28
本文选题:Mobus-Rtu + MSP430 ; 参考:《中国海洋大学》2014年硕士论文
【摘要】:随着技术发展和社会进步,,人类对海洋的研究不断深入,相应的也对海洋探测技术提出了更高的要求。海底观测网技术相比较传统的深海探测方式,具有实时性、长期性等优势。通过预先铺设的深海电缆,海底观测网将岸基控制台与分散于海底科研现场的仪器设备整合成网络,实现了科研数据的实时分析、处理与发布。极大地促进了深海科学研究的发展。 基于海底观测网的激光拉曼光谱系统是集成在深海观测网上的节点设备之一,通过分析现场获得的激光光谱数据实现对海底化学环境(例如SO4 2-离子浓度)的监测。整个系统包括岸基控制部分和水下探测部分(包括一个控制舱和两个激光器测量舱),本文涉及的测控电路设计属于水下探测部分,目的是保证系统在水下长期稳定运行。在实际设计中,本文将根据深海拉曼光谱探测系统的工作需求和观测网的相关电气规范,对拉曼光谱探测系统水下部分的测控电路进行总体设计和功能实现。在具体内容中,电路的硬件部分包括相关电路的设计和调试,开发环境为PROTEL;软件部分包括单片机系统控制程序的编写(基于C语言),开发环境为IAR Embeded Workbench。 测控电路根据功能可以分为用供电管理、单片机控制和内部通讯网络三部分。供电规范部分由一系列DC/DC模块和专门的电力保护模块组成,确保系统的用电属性符合海底观测网的电气规范。为了保持供电的可靠性,系统中绝大部分设备仪器都采用了双电源冗余配置。当发生电压电流冲击、漏电等用电异常现象时,供电管理部分的电路能够及时响应并加以抑制。以MSP430为核心的单片机主要负责对水下系统中的底层硬件进行控制,包括采集水下舱内的各种环境或者对设备的电气参数隔离检测,并根据指令控制系统内的电子元件或者特定设备。系统内部网络的设计目的是为实现水下三个舱室(一个控制舱和两个激光器测量舱)间的通讯,本文根据系统实际的软硬件基础,确定了内部网络应用层的通讯规范,并定义了相关的控制器设备地址、功能代码和寄存器映射体系,为后续的软件设计奠定了基础。 测控电路的软件部分包括对系统内控制器的编程,拉曼光谱探测系统包括两种控制器,一种是MSP430单片机,另一种是PC104工控机。本文主要讨论MSP430单片机控制程序的编写,包括对基于Modbus的RS-485总线通讯功能的软件实现,以及与各种传感器芯片(SHT11、GY-80等)的通讯功能的软件实现。 论文最后对整个系统软硬件件综合测试。岸基控制程序控制探测舱PC104完成光谱采集,得到光谱数据;MSP430单片机完成QE65000光谱仪和PC104等设备电源的通断、采集部分环境参数(温湿度和姿态)。测试表明,测控电路在软硬件方面基本实现了系统的控制要求。
[Abstract]:With the development of technology and the progress of society, the study of ocean has been deepened, and the higher requirement of ocean exploration technology has been put forward. Compared with the traditional deep-sea detection technology, the submarine observation network has the advantages of real-time, long-term and so on. Through the pre-laid deep-sea cable, the submarine observation network integrates the shore-based console and the instruments and equipments scattered in the submarine research site into a network, and realizes the real-time analysis, processing and release of the scientific data. It greatly promoted the development of deep-sea scientific research. The laser Raman spectrum system based on the submarine observation network is one of the node equipments integrated in the deep-sea observation network. By analyzing the laser spectral data obtained in the field, the laser Raman spectrum system can be used to realize the implementation of the seabed chemical environment (such as SO4). Monitoring of 2-ion concentration. The whole system includes shore-based control part and underwater detection part (including one control module and two laser measuring cabins). The design of the measurement and control circuit in this paper belongs to the underwater detection part, the purpose of which is to ensure the system to operate steadily under water for a long time. In the actual design, according to the work requirements of the deep sea Raman spectrum detection system and the relevant electrical specifications of the observation network, the overall design and function realization of the measurement and control circuit of the underwater part of the Raman spectrum detection system are carried out. In the specific content, the hardware part of the circuit includes the design and debugging of the related circuit, the development environment is protel, and the software part includes the programming of the control program of the single-chip microcomputer system (based on C language, the development environment is IAR Embeded Workbench.). The measuring and controlling circuit can be divided into three parts according to its function: power supply management, single chip microcomputer control and internal communication network. The power supply specification is composed of a series of DC/DC modules and special power protection modules to ensure that the electrical properties of the system conform to the electrical specifications of the submarine observation network. In order to maintain the reliability of power supply, most of the equipment and instruments in the system use dual power redundancy configuration. When the voltage and current impulse and leakage are abnormal, the power supply management circuit can respond and suppress in time. The single chip microcomputer with MSP430 as the core is mainly responsible for controlling the underlying hardware of the underwater system, including collecting various environments in the underwater cabin or isolating the electrical parameters of the equipment. And according to the command control system electronic components or specific equipment. In order to realize the communication between three underwater cabins (one control chamber and two laser measuring modules), the system internal network is designed. According to the actual software and hardware of the system, the communication specification of the application layer of the internal network is determined in this paper. The related controller device address, function code and register mapping system are defined, which lays the foundation for the subsequent software design. The software of the measurement and control circuit includes the programming of the controller in the system. The Raman spectrum detection system includes two kinds of controllers, one is the MSP430 single chip microcomputer, the other is the PC104 industrial control computer. This paper mainly discusses the programming of MSP430 single chip computer control program, including the software realization of RS-485 bus communication function based on Modbus, and the software realization of communication function with various sensor chips, such as SHT11GY-80 etc. Finally, the software and hardware of the whole system are tested. The shore based control program controls the detection module PC104 to complete the spectrum acquisition. The spectral data can be obtained by MSP430 single chip microcomputer to complete the switching off of the power supply of the QE65000 spectrometer and the PC104 equipment, and to collect some environmental parameters (temperature, humidity and attitude). The test shows that the hardware and software of the measurement and control circuit basically meet the control requirements of the system.
【学位授予单位】:中国海洋大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:P715.5
【参考文献】
相关期刊论文 前8条
1 田野;王振南;侯华明;翟晓薇;慈兴华;郑荣儿;;基于激光诱导击穿光谱的岩屑识别方法研究[J];光谱学与光谱分析;2012年08期
2 刘超;王红霞;魏巍;王希晨;;海底观测网监控系统的设计实现[J];光通信技术;2014年01期
3 程凯;侯华明;李德平;郭金家;赵广涛;郑荣儿;;深海原位激光拉曼光谱系统释样设计与海试[J];哈尔滨工程大学学报;2011年08期
4 亓夫军;王彬;魏旭可;;外转子直流无刷电机用于粘度测量研究[J];科技风;2011年06期
5 吕斌;李正宝;杜立彬;;海底观测网接驳盒不间断电源管理系统设计[J];海洋技术;2013年04期
6 薛志刚;金波;李德骏;杨灿军;;海底观测网络的监测信息系统研究[J];轻工机械;2010年04期
7 吴邦春;彭晓彤;周怀阳;萧蕴诗;何斌;;基于海底观测网的深海化学监测系统的设计[J];仪器仪表学报;2011年05期
8 苏安明;程维明;;基于MSP430单片机的无线温湿度检测系统[J];自动化与仪器仪表;2014年01期
相关博士学位论文 前1条
1 卢汉良;海底观测网络水下接驳盒原型系统技术研究[D];浙江大学;2011年
本文编号:1911002
本文链接:https://www.wllwen.com/kejilunwen/haiyang/1911002.html