基于Cortex-M4的海洋浮标远程监控系统
[Abstract]:The marine buoy is a floating automatic monitoring platform for obtaining marine meteorological, hydrological, water quality, ecological, dynamic and other parameters. It has the advantages of long-term, continuous, all-weather automatic observation, etc., in marine forecasting, disaster prevention and mitigation, marine economy, etc. Maritime military activities and other aspects are of great significance. The marine buoys are easily damaged or lost due to bad climate offshore fishing activities and individual human damage. This has become the main reason for the high operating cost and the high risk of long-term operation of marine buoys. The remote monitoring and warning device of buoy operation is becoming the necessary technology to ensure the safety of buoy. Remote monitoring technology has been widely used in rail transit, safety management, intelligent home and other fields, but its direct application in marine buoys will encounter many technical problems, such as the ability to live, the transmission channel, and so on. In this paper, according to the requirement of ocean buoy as a special application function, combined with the development of image acquisition technology and wireless data transmission technology, a kind of combination of camera, magnetic sensor array and infrared sensor array is designed and implemented. Image acquisition and wireless data transmission station a set of remote monitoring and warning system buoy. The system uses STM32F407ZET6 as microprocessor, realizes recognition of human body by infrared sensor LHI778, realizes recognition of ship hull by magnetic sensor MicroMag3, and triggers early warning mechanism. Under the early warning mechanism, the image acquisition circuit collects the image data of the camera OV2640, and transmits the image data to the remote receiving terminal through the wireless data transmission station. At the same time, the battery management unit is used to reduce the power consumption of the system and make the system work for a long time. The whole system adopts the modularization design, has the intelligence, the low power consumption and so on characteristic. The sensing angle and distance of infrared sensor, the detection distance of magnetic sensor and the position of camera are tested and calibrated, the communication distance of digital transmission station is tested, and the system is finally adjusted. The prototype system can basically meet the requirements of offshore buoys and provide necessary technical support for the safe operation of buoys.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P715.2
【参考文献】
相关期刊论文 前10条
1 尹刚;张英堂;范红波;李志宁;;基于磁传感器阵列的磁性目标跟踪方法[J];上海交通大学学报;2015年12期
2 熊雪艳;梁光胜;赖程鹏;郝建红;;基于OV2640模块的网络视频监控系统设计[J];单片机与嵌入式系统应用;2015年12期
3 张琰;;基于无线传感器网络的智能家居远程监控系统研究与设计[J];通讯世界;2015年20期
4 胡佳飞;李裴森;于洋;田武刚;陈棣湘;潘孟春;;磁传感器技术的应用与发展[J];国防科技;2015年04期
5 易克初;李怡;孙晨华;南春国;;卫星通信的近期发展与前景展望[J];通信学报;2015年06期
6 李民;刘世萱;王波;陈世哲;齐尔麦;汪东平;;海洋环境定点平台观测技术概述及发展态势分析[J];海洋技术学报;2015年03期
7 陈燕珍;王其松;房树林;徐志远;王静;;无人值守海洋台站自动观测仪器运行在线监控及预警系统方案研究[J];海洋开发与管理;2015年04期
8 杜劲松;;基于球坐标系的卫星磁异常数据处理与正反演方法研究[J];测绘学报;2015年02期
9 王波;李民;刘世萱;陈世哲;朱庆林;王红光;;海洋资料浮标观测技术应用现状及发展趋势[J];仪器仪表学报;2014年11期
10 郭发东;刘海丰;李麟;李选群;李民;刘世萱;李效东;;海洋监测浮标上的3G无线视频监控系统设计[J];山东科学;2014年05期
相关博士学位论文 前2条
1 臧风妮;智能视频监控中海面舰船目标检测算法研究[D];中国海洋大学;2014年
2 胡佳飞;基于GMR的高性能小型化磁传感器理论与技术研究[D];国防科学技术大学;2014年
相关硕士学位论文 前10条
1 曾文兵;基于STM32F407的视频采集与传输系统设计[D];华中师范大学;2016年
2 彭飞飞;低功耗长距离无线收发模块设计与实现[D];电子科技大学;2016年
3 张少伟;适用于仿生复眼的多路图像采集与处理系统设计[D];北京理工大学;2016年
4 杨林森;高速智能图像采集系统的设计[D];哈尔滨工业大学;2016年
5 胡文慧;无人值班变电站智能视频监控系统的设计与实现[D];吉林大学;2015年
6 周金金;海洋浮标图像采集系统的电子稳像技术研究[D];中国矿业大学;2015年
7 吴国超;基于磁异常的目标体定位反演方法研究[D];吉林大学;2015年
8 陆文;电源优化管理的嵌入式视频监控系统设计与实现[D];广东工业大学;2015年
9 张浩;磁异常信号检测与源定位方法研究[D];电子科技大学;2015年
10 严鹏飞;基于弱磁传感器的电子罗盘设计及干扰补偿算法研究[D];电子科技大学;2015年
,本文编号:2181064
本文链接:https://www.wllwen.com/kejilunwen/haiyang/2181064.html