当前位置:主页 > 科技论文 > 海洋学论文 >

中国东部陆架海生源硫的分布、通量及其对气溶胶中非海盐硫酸盐的贡献

发布时间:2018-09-13 06:26
【摘要】:二甲基硫(dimethylsulfide, DMS)是海洋中最重要的挥发性生源硫化物,其在大气中的氧化产物对全球气候变化和酸雨的形成产生重要的影响。中国东部陆架海是全球陆架海区的重要组成部分。虽然只占全球海洋的一小部分,但对全球DMS释放的贡献较大。因此对该海域中DMS及其前体物质—p-二甲巯基丙酸内盐(DMSP)的生物地球化学进行研究,有助于深入了解DMS、DMSP和生物圈、大气环境之间复杂的相互作用,对在区域和全球尺度上准确估算DMS的海—气通量及其对气候和环境的影响具有重要的意义。本论文以受人类活动影响较大的中国东部陆架海为研究对象,对海水中DMS和DMSP的浓度分布的季节变化和影响因素进行了研究;同时测定了不同季节DMS的生产与消费速率以便找出各季节DMS生物生产的控制因素;对不同粒径浮游植物的叶绿素a(Chl-α)和颗粒态DMSP (DMSPp)浓度进行研究,从中找出DMSPp的主要贡献者;在特定站位进行了DMS和DMSP周日变化的研究,以认识其周日变化特征及其控制因素;对中国东部陆架海的DMS海—气通量进行了计算并评价该海域DMS释放对全球硫释放的贡献;同时对中国陆架海区生源硫对气溶胶中非海盐硫酸盐(nss-SO42-)的贡献进行了调查。主要研究结果如下:(1)2010年4月、2011年6月、2010年9月和2009年12月对黄渤海DMS和DMSP的浓度分布的季节变化进行了研究。黄渤海春季DMS、溶解态DMSP (DMSPd)和DMSPp的浓度分别为1.77(0.48-4.92)、3.98(0.68-11.32)和17.89(2.82-52.33) nmol L-1;夏季浓度分别为6.85(1.60-12.36)、7.25(2.28-19.05)和61.87(6.28-224.01)nmol L-1;秋季浓度分别为2.64(0.78-7.95)、4.89(1.42-11.30)和26.41(6.24-137.87)nmol L-1;冬季浓度分别为0.95(0.07-3.30)、1.18(0.22-3.54)和5.01 (1.63-12.33) nmol L-1。由上述结果可以看出,黄渤海DMS、DMSPd和DMSPp的季节变化趋势为夏季秋季春季冬季。由于渤海、北黄海相对封闭,与外海交换不够充分,受人为活动影响较大,DMS和DMSP的分布均呈现由近岸向外海逐渐降低的趋势。南黄海DMS和DMSP的空间分布明显受到长江冲淡水和南黄海冷水团的影响。各季节DMS和DMSP呈现不同的分布态势。黄海中部受冷水团强弱的季节变化影响,春夏季DMS和DMSP的浓度高于近岸,秋季和冬季则低于近岸。在南黄海南部受长江冲淡水流向与流量的季节变化影响,DMS和DMSP在夏季和秋季在该海域存在高值,而在春季和冬季浓度较低。另外,DMS和DMSP周日变化的总体趋势是白天高、夜晚低,表明DMS/DMSP的生物生产过程与日光辐射有关。2011年3-4月、2011年6月和2010年11-12月对东海DMS、DMSP的浓度分布的时空变化进行了研究。春季东海表层海水中DMS、DMSPd和DMSPp浓度分别为1.84(0.79-4.86)、2.59(1.03-7.96)和12.84 (2.21-30.03) nmol L-1;夏季DMS、DMSPd和DMSPp浓度分别为2.99(0.56-5.97)、4.74(2.63-7.26)和15.92 (6.08-34.78) nmol L-1;秋季DMS、DMSPd和DMSPp浓度分别为1.72(0.72-5.95)、2.32(1.24-6.20)和8.30 (3.27-47.55) nmol L-1。由此看出,东海DMS和DMSP浓度呈现明显的季节变化,东海DMS和DMSP的空间分布明显受到长江冲淡水和贫营养的黑潮水系及其分支的影响。各季节DMS和DMSP的水平分布特征总体上大致相似,即从近岸向外海呈现逐渐降低的趋势,但各季节又呈现出各自一定的特点。(2)DMS和DMSP与Chl-a的相关性分析显示,其显著相关性分别出现在藻华爆发的春季南黄海、秋季东海以及甲藻比例较高的夏季东海。说明浮游植物生物量在控制黄渤海DMS/DMSP的生产与分布方面发挥重要的作用。此外,只有当研究海域DMSP高产藻种比例较高时或者某一特定藻类成为研究海域优势藻类时DMS和DMSPp与Chl-a之间才存在明显的相关性。(3)黄渤海春季(3月)DMS的生产与消费速率分别为12.32(0.65-34.70) nmol L-1 d-1和7.94 (0.17-27.38) nmol L-1 d-1;夏季分别为20.78 (2.90-35.86) nmol L-1 d-1和11.42 (1.92-23.34) nmol L-1 d-1;秋季分别为9.25 (0.55-28.63) nmol L-1 d-1和5.11 (0.1-16.46) nmol L-1 d-1.其生产与消费速率的季节变化规律为夏季春季秋季。东海春季DMS的生产与消费速率分别为7.15 (2.52-16.63) nmolL-1d-1和4.75 (0.79-14.66) nmol L-1 d-1;秋季DMS的生产与消费速率分别为5.07(1.49-12.79) nmolL-1 d-1和3.36 (0.36-8.33) nmolL-1 d-1。其生产与消费速率的季节变化规律为春季秋季。总的来看,高值区多出现在Chl-α浓度较高的藻华海区和受人为活动显著影响的近岸海区。表明DMS的生物生产与消费速率与浮游植物的生物活动密切相关,同时受近岸人为活动的显著影响。由调查结果可知,春季DMS的生产与消费速率均高于秋季,表明春季浮游植物的生命活动可能更加旺盛。相关性分析发现DMS的生产与消费的首要控制因素各季节存在显著差异,在发生藻华的局部海域DMSPd、DMS和Chl-α易成为DMS生产与消费速率的首要控制因素。而在秋季东海海水温度与DMS生产与消费速率显著相关。这表明DMS生产与消费过程受温度、盐度、Chl-α、DMS、DMSPd和细菌等多种物理化学和生物因素的共同作用。在发生藻华的海域DMS和浮游植物生物量易成为DMS生产与消费速率的首要控制因素。(4)我们对夏季黄渤海和春季南黄海、东海进行了DMSPp和Chl-α的分级测定。两次调查结果均表明大粒径的微型浮游植物(larger nanoplankton)是主要贡献者,其对DMSPp和Chl-α的贡献均在80%左右。根据同航次浮游植物调查可知,大粒径微型浮游植物主要由硅藻组成。同时,我们发现在营养盐较高的河口和近岸海域小型浮游植物(microplankton)对Chl-α和DMSPp有重要贡献。而在营养盐浓度较低的黄海中部,微微型浮游植物(picoplankton)对Chl-α和DMSPp有显著贡献。表明大粒径的浮游植物可能更适合在高营养盐浓度的水域中生长,而小粒径的浮游植物则更适合在低营养盐浓度的水域生长。(5)根据现场风速和表层海水DMS浓度,利用N2000公式计算了黄渤海和东海DMS的海-气交换通量。结果显示黄渤海和东海DMS海-气通量具有明显的季节差异。其中黄渤海的通量季节变化规律为:夏季秋季春季冬季;东海与黄渤海类似,也是夏季秋季春季。整个中国东部陆架海区DMS海-气通量的最高值均出现在夏季。调查结果显示,黄渤海和东海DMS的年平均通量分别为5.59 μmol m-2 d-1和7.20 μmol m-2 d-1。根据不同季节和海区DMS年平均通量和海域面积,初步估算出黄渤海和东海DMS年释放量分别为2.98×10-2 Tg-S a-1和6.48×10-2Tg S a-1,其DMS的年释放量分别占了全球释放量(15-33 Tg Sa-1)的0.09%-0.2%和0.20%-0.43%。此结果也表明虽然中国东部陆架海区仅占全球海洋很小的一部分(0.34%)但是其对全球海洋DMS的贡献较大。(6)利用nss-SO42-bio/MSA的比值估算出在渤海、北黄海春夏秋冬四个季节生源硫对大气中nss-SO42-贡献比分别为:9.70%、8.90%、4.90%和1.95%;南黄海春夏秋冬四个季节贡献比依次为17.60%、8.10%、8.70%和3.30%;东海春夏秋三个季节分别为13.6%、5.3%和4.3%。由以上结果可知中国东部陆架海各海区各季节生源硫释放对nss-SO42-贡献率的比值的季节变化均为春季最高,夏秋次之,冬季最低。该结果表明生源硫化物在中国东部陆架海区的高贡献率均出现在春季,尤其在春季南黄海和东海其贡献显著高于其他季节。进一步分析发现,东海、南黄海和渤海北黄海的生源硫化物年平均贡献率分别为7.73%、9.43%和6.36%,这表明人为输入是中国东部陆架海大气气溶胶中nss-SO42-的主要来源;同时表明渤海、北黄海受人为活动影响更为显著。这可能与渤海、北黄海所处的地理位置有关。
[Abstract]:Dimethylsulfide (DMS) is the most important volatile source sulfide in the ocean. Its oxidation products in the atmosphere have an important impact on global climate change and acid rain formation. Therefore, the Biogeochemical Study of DMS and its precursor, p-dimethylmercaptopropionic acid internal salt (DMSP), in this sea area will be helpful to understand the complex interactions among DMS, DMSP, biosphere and atmospheric environment, and to accurately estimate the air-sea flux of DMS and its impacts on climate and environment at regional and global scales. In this paper, the seasonal variation and influencing factors of DMS and DMSP concentration distribution in the eastern China shelf sea, which is greatly influenced by human activities, were studied, and the production and consumption rates of DMS in different seasons were measured to find out the controlling factors of DMS biological production in different seasons. Diurnal variations of chlorophyll a (Chl-a) and particulate DMSP (DMSP) concentrations in phytoplankton of different sizes were studied to identify the major contributors to DMSP. Diurnal variations of DMS and DMSP were studied at specific sites to understand their characteristics and controlling factors. DMS air-sea fluxes in the eastern shelf of China were calculated. The contribution of DMS release to global sulfur release was evaluated, and the contribution of source sulfur to non-sea salt sulfate (nss-SO42-) in aerosols from China shelf was investigated. The concentrations of DMS, DMSPd (DMSPd) and DMSPp were 1.77 (0.48-4.92), 3.98 (0.68-11.32), 3.98 (0.68-11.32) and 17.899 (2.82-52.33) nmol L-1 in spring, 6.85 (1.60-12.36), 7.25 (2.28-19.05) and 61.87 (6.28-19.28-19.05) nmol-1 in summer, 2.64 (0.78-7.78-7.78-7.95), 4.95.95.95.95 (1.4.95) and 17.89-4.89-1 (1.18.82-1-1-52.82-52.82-52.33) nmol-52.33 41 (6.24-137.87) Nmol L-1; winter concentrations are 0.95 (0.07-3.30), 1.18 (0.22-3.54) and 5.01 (1.63-12.33) nmol L-1, respectively. From the above results, we can see that the seasonal variation trend of DMS, DMSPd and DMSPp in the Yellow Sea and the Bohai Sea is summer, autumn, spring and winter. Because of the Bohai Sea, the North Yellow Sea is relatively closed, and the exchange with the sea is not enough, which is greatly influenced by human activities. The spatial distribution of DMS and DMSP in the South Yellow Sea is obviously affected by the Yangtze River diluted water and the South Yellow Sea cold water mass. In the southern part of the South Yellow Sea, the concentration of DMS and DMSP is high in summer and autumn, but low in spring and winter. In addition, the diurnal variation trend of DMS and DMSP is high in the daytime and low in the night, indicating that the biological production process and solar radiation of DMS/DMSP have been observed. Concentrations of DMS, DMSP and DMSP in the East China Sea in spring were 1.84 (0.79-4.86), 2.59 (1.03-7.96) and 12.84 (2.21-30.03) nmol-1, respectively, and 2.99 (0.56-5.97) and 4.74 (2.63-7.26) nmol-1, respectively. The concentrations of DMS, DMSPd and DMSPp in autumn were 1.72 (0.72-5.95), 2.32 (1.24-6.20) and 8.30 (3.27-47.55) nmol L-1, respectively. The horizontal distribution characteristics of DMS and DMSP in different seasons are similar, that is, the trend of DMS and DMSP decreasing gradually from coastal to offshore, but each season has its own characteristics. (2) The correlation analysis of DMS and DMSP with Cl-a shows that the significant correlation appears in the South Yellow Sea in spring, East China Sea in autumn and dinoflagellate ratio. In addition, the correlation between DMS and DMSPp and Cl-a was significant only when the proportion of DMSP high-yield algae was high or a specific algae became dominant algae in the study area. The production and consumption rates of DMS were 12.32 (0.65-34.70) nmol L-1 D-1 and 7.94 (0.17-27.38) nmol L-1 D-1 in spring and 11.42 (1.92-23.34) nmol L-1 D-1 in summer and 9.25 (0.55-28.63) nmol L-1 D-1 and 5.11 (0.1-16.46) nmol L-1 D-1 D-1 in autumn, respectively. The seasonal variation of DMS production and consumption rates were 7.15 (2.52-16.63) nmolL-1d-1 and 4.75 (0.79-14.66) nmol L-1 D-1 in spring and 5.07 (1.49-12.79) nmolL-1 D-1 and 3.36 (0.36-8.33) nmolL-1 D-1 in autumn, respectively. Generally speaking, the high values of DMS occur in algal blooms with high concentration of Chl-a and offshore areas markedly affected by human activities, indicating that the biological production and consumption rate of DMS are closely related to the biological activities of phytoplankton and are significantly affected by human activities in the offshore areas. Correlation analysis showed that DMS production and consumption were significantly different from season to season. DMSPd, DMS and Chl-a were easy to be the primary control factors of DMS production and consumption in algae bloom areas. There is a significant correlation between DMS production and consumption rate and sea water temperature in the East China Sea. This indicates that DMS production and consumption process are affected by many physical, chemical and biological factors such as temperature, salinity, Chl-a, DMS, DMSPd and bacteria. DMSPp and Chl-a were measured in the Yellow Sea and Bohai Sea in summer and South China Sea in spring. The results of both surveys showed that large-sized micro-plankton was the main contributor and its contribution to DMSPp and Chl-a was about 80%. At the same time, we found that microplankton contributed significantly to Chl-a and DMSPp in estuaries and coastal waters with higher nutrients, while picoplankton contributed significantly to Chl-a and DMSPp in central Yellow Sea with lower nutrient concentrations. The sea-air exchange fluxes of DMS in the Yellow Sea and the Bohai Sea and the East China Sea were calculated by using the N2000 formula according to the wind speed and the DMS concentration in the surface water. The seasonal variations of DMS flux in the Yellow Sea and Bohai Sea are as follows: summer, autumn, spring and winter; the East China Sea is similar to the Yellow Sea and Bohai Sea, but also summer, autumn and spring. According to the annual average flux and sea area of DMS in different seasons and seas, the annual DMS release in the Yellow Sea and the Bohai Sea and the East China Sea were estimated to be 2.98 *10-2 Tg-SA-1 and 6.48 *10-2 Tg-SA-1, respectively. The annual DMS release accounted for 0.09% - 0.2% and 0.20% - 0.43% of the global total (15-33 Tg-S a-1), respectively. The continental shelf area of Eastern China is only a small part of the global ocean (0.34%) but its contribution to DMS is large. (6) The contribution ratios of source sulfur to nss-SO42-bio/MSA in Bohai Sea, North Yellow Sea in spring, summer, autumn and winter are estimated to be 9.70%, 8.90%, 4.90% and 1.95% respectively, and that in South Yellow Sea in spring, summer, autumn and winter. The seasonal contribution ratios were 17.60%, 8.10%, 8.70% and 3.30% respectively, and 13.6%, 5.3% and 4.3% respectively in spring, summer and autumn in the East China Sea. The high contribution rates of sulfides in the eastern China shelf were found in spring, especially in the South Yellow Sea and the East China Sea, which were significantly higher than those in other seasons. The main source of nss-SO42-in atmospheric aerosols and the results show that the Bohai Sea and the North Yellow Sea are more affected by human activities, which may be related to the geographical location of the Bohai Sea and the North Yellow Sea.
【学位授予单位】:中国海洋大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:P732.6;X513

【相似文献】

相关期刊论文 前10条

1 丛丕福;牛铮;蒙继华;李向军;;1998~2003年卫星反演的中国陆架海叶绿素a浓度变化分析[J];海洋环境科学;2006年01期

2 缪经榜;陆架海流的计算方法(Ⅱ)[J];海洋与湖沼;1981年06期

3 黄大吉,苏纪兰,,陈宗镛;三维陆架海模式在渤海中的应用Ⅱ.温度的季节性变化[J];海洋学报(中文版);1996年06期

4 董军社,陈平富;氧同位素:追踪陆架海沿岸水团变化的良好标志[J];大自然探索;1996年02期

5 罗晓凡;魏皓;;陆架海碳循环模式研究现状与进展[J];海洋科学进展;2014年02期

6 韩喜彬;李广雪;杨子赓;宋健娜;刘勇;;中国东部陆架海对“新仙女木”事件的响应[J];海洋地质动态;2005年12期

7 修日晨;;关于陆架海区潮流运动方向旋转的研究[J];海洋湖沼通报;1984年04期

8 蔡树群,甘子钧;三维斜压陆架海模式的应用: 南海上混合层的季节变化[J];海洋学报(中文版);2000年03期

9 袁业立;中国陆架海海洋环流与海洋科学研究及展望[J];世界科技研究与发展;1998年04期

10 郭炳火;左海滨;;海底漂浮物初步实验[J];黄渤海海洋;1984年02期

相关会议论文 前6条

1 邱春华;毛华斌;吴加学;;台风对陆架海底温度的影响[A];中国海洋湖沼学会第十次全国会员代表大会暨学术研讨会论文集[C];2012年

2 李安春;徐方建;肖尚斌;刘建国;;中国陆架海全新世泥质沉积形成历史及气候记录[A];中国海洋湖沼学会第九次全国会员代表大会暨学术研讨会论文摘要汇编[C];2007年

3 李广雪;;中国东部陆架海末次冰消期以来沉积环境[A];海洋地质环境与资源学术研讨会论文摘要汇编[C];2003年

4 高抒;;陆架海沉积作用研究的基本问题[A];2001年全国沉积学大会摘要论文集[C];2001年

5 孟祥君;张训华;;中国东部海区及邻域磁场特征[A];中国地球物理·2009[C];2009年

6 王厚杰;杨作升;;现代黄河沉积物“源到汇”过程中的几个问题[A];第九届全国河口海岸学术研讨会论文(摘要)集[C];2006年

相关博士学位论文 前5条

1 杨剑;中国东部陆架海生源硫的分布、通量及其对气溶胶中非海盐硫酸盐的贡献[D];中国海洋大学;2014年

2 刘志宇;强潮驱陆架海中的湍流与混合[D];中国海洋大学;2009年

3 胡邦琦;中国东部陆架海泥质沉积区的物源识别及其环境记录[D];中国海洋大学;2010年

4 汪嘉宁;陆架海垂直混合过程研究[D];中国海洋大学;2013年

5 胡利民;大河控制性影响下的陆架海沉积有机质的“源—汇”作用[D];中国海洋大学;2010年

相关硕士学位论文 前5条

1 宗晓龙;琼东陆架海湍流混合的观测研究[D];广东海洋大学;2015年

2 卢汐;黑潮与东海的碳交换[D];中国科学院研究生院(海洋研究所);2015年

3 王琦;中国陆架海区碳水化合物的浓度分布及影响因素[D];中国海洋大学;2014年

4 王晓君;中国东部陆架海增暖对大气环流的影响[D];中国海洋大学;2012年

5 王立军;中国海区域的海洋数值模式与海—气耦合试验研究[D];武汉理工大学;2005年



本文编号:2240349

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/haiyang/2240349.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0d401***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com