复杂类型海洋环境监测数据的空间抽样方法优化
[Abstract]:The establishment of "space, sky, earth and bottom" three-dimensional monitoring network has laid a good foundation for marine data development and economic development, but is limited by soft / hard platforms such as marine data management, data analysis and data application. The phenomenon of "big data, little knowledge" in marine field is becoming more and more prominent. Therefore, how to quickly obtain information from massive marine data to provide services for intelligent decision-making is one of the current research hotspots. Sampling survey can quickly obtain effective key data from massive data, which is suitable for large-scale and large-scale data, and its cycle is short and the cost is low, which is the main way to solve the problem of big data's rapid application. At present, sampling methods still rely on the traditional probability sampling theory. Driven by multi-application requirements, how to extract effective and reliable data to generate effective information quickly is a challenge for existing sampling methods. Marine environmental monitoring data mainly refers to the marine environmental situation monitoring data obtained by means of buoys, survey ships and manual monitoring. The data characteristics and sampling problems can be summarized as follows: (1) oceanography. The monitoring data of marine environment are increasing and accelerating at an unprecedented rate, and the dynamic updates are frequent and multi-source. There are redundant problems in the spatial scale and time scale of the data. (2) Spatial correlation, the data has spatial attribute characteristics, the similarity of close data is high, which is easy to cause spatial association failure or sample overlap, and the sampling accuracy decreases; (3) Spatial heterogeneity, complex data coverage and uneven spatial distribution, which bring difficulties to data reuse and post-processing. Therefore, considering the characteristics of marine environment monitoring data, the design of optimal spatial sampling method to help the effective use of data is a problem worthy of study. In the design of sampling and estimation, excessive reduction of sampling cost will lead to errors in estimation accuracy and distortion of sampling results, while excessive sample size will increase data redundancy and thus increase cost. How to balance the sampling precision with the cost is the main theme of the design optimization spatial sampling method. The main contents of this paper are as follows: (1) analyzing the characteristics of marine environmental monitoring data, summarizing the challenges brought by multi-modal, high-dimensional and multi-attribute characteristics to sampling methods, and summarizing the research status of existing sampling methods. The problems arising from the application of these methods to marine environmental monitoring data are analyzed. (2) A systematic spatial sampling optimization method is proposed, considering the spatial correlation of data, the semi-variant function is introduced into the design of spatial sampling method. At the same time, the sampling point can reduce the redundancy of information under the premise of sampling accuracy. (3) considering the application demand of the marine environmental monitoring data, considering the multi-attribute relation of sampling object, the sampling point is not only uniformly distributed in the sea area, but also guaranteed to reduce the redundancy of information under the premise of sampling accuracy. By further expanding the method by calculating the weight of each attribute, a spatial sampling method which can meet the needs of multi-attribute comprehensive assessment of marine environment monitoring data is designed for more comprehensive use. More economical sampling estimation. (4) taking the spatial data of a certain sea area as the experimental object, through the analysis of variance, sampling ratio and trend surface, The spatial sampling method of complex marine environment monitoring data designed in this paper is compared with the traditional sampling method. The results show that the amount of data can be effectively reduced by using the step size calculated by this method. At the same time, to ensure a certain sampling accuracy, a better response to the overall characteristic trend.
【学位授予单位】:上海海洋大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:P717
【相似文献】
相关期刊论文 前10条
1 安雅娟;鲁珊珊;;环境监测数据的审核措施[J];科技致富向导;2013年23期
2 晁晓美;;解决环境监测数据准确性问题的建议[J];黑龙江科技信息;2011年14期
3 朱雅丽;张华;;谈如何提高环境监测数据的可靠性[J];辽宁师专学报(自然科学版);2011年04期
4 董志海;;环境监测数据审核技巧及重点探讨[J];科技风;2012年01期
5 江建辉;高军林;徐丽红;;环境监测数据的可靠性分析探索[J];科技资讯;2012年20期
6 高春燕;;环境监测数据审核浅析[J];云南科技管理;2012年06期
7 李秀芹;;环境监测数据审核中发现的一些问题及改进方法探讨[J];科技风;2013年12期
8 宗岩;吴玉慧;;解决环境监测数据准确性问题的建议[J];科技致富向导;2011年11期
9 杨驰宇;环境监测数据的审核研究[J];吉林师范大学学报(自然科学版);2004年02期
10 汪晓丹;;浅论环境监测数据的一级审核[J];大众科技;2012年12期
相关会议论文 前6条
1 廖宏兴;廖云峰;;论环境监测数据与报告审核[A];2010中国环境科学学会学术年会论文集(第二卷)[C];2010年
2 徐姬;;环境监测数据在环境执法中证据效力的探讨[A];广西环境科学学会2002—2003年度学术论文集[C];2003年
3 王美侠;;关于环境监测数据达到“五性”的分析[A];中国环境科学学会2006年学术年会优秀论文集(下卷)[C];2006年
4 卢霞明;罗彬;;浅谈环境监测数据审核[A];四川省第十次环境监测学术交流会论文集[C];2005年
5 娄涛;吕鹂;;加强环境监测数据质量管理措施探讨[A];2013中国环境科学学会学术年会论文集(第四卷)[C];2013年
6 叶文学;刘一鸣;王裘伦;;GMS空间环境监测数据接收站[A];中国空间科学学会空间探测专业委员会第十次学术会议论文集[C];1997年
相关重要报纸文章 前10条
1 记者 李先宏、通讯员 勾汉斌、郭梦宇;武汉环境监测数据获35国认可[N];湖北日报;2006年
2 陕西省环境监测中心站 黄国全;如何保证监测数据准确性?[N];中国环境报;2011年
3 桓声;山东:环境监测数据将作为执法依据[N];中国改革报;2008年
4 马军 陶冠峰;海洋环境监测数据远程编报系统升级[N];中国海洋报;2010年
5 穆桑桑;环境监测数据屡屡造假的背后……[N];中国经济导报;2014年
6 王炜邋季芳;环境监测数据是可靠的[N];人民日报;2008年
7 记者 段丽茜;PM2.5:不同高度差别不大 PM10:越近地面浓度越高[N];河北日报;2014年
8 本报记者 陈巍巍;东方通助推智能环保[N];计算机世界;2013年
9 任晓明 齐伟;“一级天”数超过去年全年[N];太原日报;2012年
10 本报记者 孙长岩;全省144个空气站实行“转让—经营”模式[N];联合日报;2012年
相关博士学位论文 前1条
1 徐向军;基于环境监测数据的源项估算技术研究[D];太原理工大学;2012年
相关硕士学位论文 前5条
1 施黎莉;复杂类型海洋环境监测数据的空间抽样方法优化[D];上海海洋大学;2016年
2 黄野;环境监测数据管理系统开发与实现[D];电子科技大学;2013年
3 朱华清;环境监测数据自动统计处理模型的研究与实现[D];景德镇陶瓷学院;2007年
4 廖雪梅;文物遗址环境监测数据服务系统设计与开发[D];浙江大学;2008年
5 朱锐;南极长城湾海域生态环境监测数据的实时传输[D];国家海洋技术中心;2010年
,本文编号:2472897
本文链接:https://www.wllwen.com/kejilunwen/haiyang/2472897.html